These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4922080)

  • 1. Growth of Pseudomonas fluorescens with sodium maleate as a carbon source.
    Perry JT; Edwards VH
    Appl Microbiol; 1970 Nov; 20(5):710-4. PubMed ID: 4922080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening for microorganisms producing D-malate from maleate.
    van der Werf MJ; van den Tweel WJ; Hartmans S
    Appl Environ Microbiol; 1992 Sep; 58(9):2854-60. PubMed ID: 1444397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization.
    Oku S; Komatsu A; Nakashimada Y; Tajima T; Kato J
    Microbes Environ; 2014; 29(4):413-9. PubMed ID: 25491753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial production of D-malate from maleate.
    Asano Y; Ueda M; Yamada H
    Appl Environ Microbiol; 1993 Apr; 59(4):1110-3. PubMed ID: 8476285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enzymic degradation of alkyl-substituted gentisates, maleates and malates.
    Hopper DJ; Chapman PJ; Dagley S
    Biochem J; 1971 Mar; 122(1):29-40. PubMed ID: 5124802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mode of action of kanamycin. II. Effect of kanamycin on the oxidation of C4-dicar-boxylic acids (malate, fumarate and succinate) and diamine (putrescine) by avian tubercle bacilli.
    AOKI T; HAYASHI A; ITO F
    J Antibiot (Tokyo); 1960 Jul; 13():260-4. PubMed ID: 14448357
    [No Abstract]   [Full Text] [Related]  

  • 8. Fumarate reductase activity of Streptococcus faecalis.
    Aue BJ; Deiel RH
    J Bacteriol; 1967 Jun; 93(6):1770-6. PubMed ID: 4960892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of malate from glycollate by Pseudomonas ovalis Chester.
    KORNBERG HL; GOTTO AM
    Nature; 1959 Jun; 183():1791-3. PubMed ID: 14411058
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanism of benzylsuccinate synthase: stereochemistry of toluene addition to fumarate and maleate.
    Qiao C; Marsh EN
    J Am Chem Soc; 2005 Jun; 127(24):8608-9. PubMed ID: 15954762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maleate isomerase.
    Scher W; Jakoby WB
    J Biol Chem; 1969 Apr; 244(7):1878-82. PubMed ID: 5780844
    [No Abstract]   [Full Text] [Related]  

  • 12. Utilization of dicarboxylic acids by Pseudomonas aeruginosa.
    Tiwari NP; Campbell JJ
    Can J Microbiol; 1969 Sep; 15(9):1095-100. PubMed ID: 4391940
    [No Abstract]   [Full Text] [Related]  

  • 13. Differential uptake of fumarate by Candida utilis and Schizosaccharomyces pombe.
    Saayman M; van Vuuren HJ; van Zyl WH; Viljoen-Bloom M
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):792-8. PubMed ID: 11152071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fumarate metabolism and ATP production in Pseudomonas fluorescens exposed to nitrosative stress.
    Appanna VP; Auger C; Thomas SC; Omri A
    Antonie Van Leeuwenhoek; 2014 Sep; 106(3):431-8. PubMed ID: 24923559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling solid-to-solid biocatalysis: integration of six consecutive steps.
    Michielsen MJ; Frielink C; Wijffels RH; Tramper J; Beeftink HH
    Biotechnol Bioeng; 2000 Sep; 69(6):597-606. PubMed ID: 10918134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of temperature on substrate and energy conversion in Pseudomonas fluorescens.
    Mennett RH; Nakayama TO
    Appl Microbiol; 1971 Nov; 22(5):772-6. PubMed ID: 5002310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesaconase Activity of Class I Fumarase Contributes to Mesaconate Utilization by Burkholderia xenovorans.
    Kronen M; Sasikaran J; Berg IA
    Appl Environ Microbiol; 2015 Aug; 81(16):5632-8. PubMed ID: 26070669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The specificity of fumarate as a switching factor of the bacterial flagellar motor.
    Barak R; Giebel I; Eisenbach M
    Mol Microbiol; 1996 Jan; 19(1):139-44. PubMed ID: 8821943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymic hydration of mesaconate by Pseudomonas fluorescens.
    KATSUKI H; ARIGA N; KATSUKI F; NAGAI J; EGASHIRA S; TANAKA S
    Biochim Biophys Acta; 1962 Jan; 56():545-51. PubMed ID: 14454338
    [No Abstract]   [Full Text] [Related]  

  • 20. Transport of C(4)-dicarboxylates in Wolinella succinogenes.
    Ullmann R; Gross R; Simon J; Unden G; Kröger A
    J Bacteriol; 2000 Oct; 182(20):5757-64. PubMed ID: 11004174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.