BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 4922213)

  • 1. Chemical studies on methionyl-tRNA synthetase from Escherichia coli.
    Bruton CJ; Hartley BS
    J Mol Biol; 1970 Sep; 52(2):165-78. PubMed ID: 4922213
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on methionyl transfer RNA synthetase from Escherichia coli K12. Amino acid composition and relation of sulfhydryl groups to enzyme activities.
    Lawrence FJ
    Eur J Biochem; 1970 Sep; 15(3):436-41. PubMed ID: 4917101
    [No Abstract]   [Full Text] [Related]  

  • 3. Seryl transfer ribonucleic acid synthetase from Escherichia coli. Substrate binding and chemical modification of cysteinyl residues.
    Waterson RM; Clarke SJ; Kalousek F; Konigsberg WH
    J Biol Chem; 1973 Jun; 248(12):4181-8. PubMed ID: 4576131
    [No Abstract]   [Full Text] [Related]  

  • 4. Lysyl-sRNA synthetase from Escherichia coli.
    Stern R; Mehler AH
    Biochem Z; 1965 Aug; 342(4):400-9. PubMed ID: 4284804
    [No Abstract]   [Full Text] [Related]  

  • 5. Requirement of different sulfhydryl groups in the activation and transfer reactions of isoleucyl transfer ribonucleic acid synthetase.
    Kuo T; DeLuca M
    Biochemistry; 1969 Dec; 8(12):4762-8. PubMed ID: 4312454
    [No Abstract]   [Full Text] [Related]  

  • 6. Subunit structure and binding properties of three amino acid transfer ribonucleic acid ligases.
    Rymo L; Lundvik L; Lagerkvist U
    J Biol Chem; 1972 Jun; 247(12):3888-97. PubMed ID: 4555952
    [No Abstract]   [Full Text] [Related]  

  • 7. [Study of methionyl tRNA synthetase of Escherichia coli. 2. Selective and reversible inactivation of the capacity to activate tRNA].
    Cassio D
    Eur J Biochem; 1968 Apr; 4(2):222-4. PubMed ID: 4871905
    [No Abstract]   [Full Text] [Related]  

  • 8. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli.
    Fayat G; Fromant M; Blanquet S
    Biochemistry; 1977 May; 16(11):2570-9. PubMed ID: 193563
    [No Abstract]   [Full Text] [Related]  

  • 9. Circular dichroism during deacylation of methionyl-tRNA met -f and formylmethionyl-tRNA met -f from E. coli.
    Wickstrom E
    Biochem Biophys Res Commun; 1971 Jun; 43(5):976-83. PubMed ID: 4936130
    [No Abstract]   [Full Text] [Related]  

  • 10. Substrate complexes of phenylalanyl-tRNA synthetase from Escherichia coli.
    Kosakowski HM; Böck A
    Eur J Biochem; 1971 Dec; 24(1):190-200. PubMed ID: 4944990
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of sulfhydryl groups in activating enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328550
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of sulfhydryl groups in activatin enzymes. Properties of Escherichia coli lysine-transfer ribonucleic acid synthetase.
    Stern R; DeLuca M; Mehler AH; McElroy WD
    Biochemistry; 1966 Jan; 5(1):126-30. PubMed ID: 5328235
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on methionyl transfer RNA synthetase. 1. Purification and some properties of methionyl transfer RNA synthetase from Escherichia coli K-12.
    Lemoine F; Waller JP; van Rapenbusch R
    Eur J Biochem; 1968 Apr; 4(2):213-21. PubMed ID: 4297674
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on methionyl-tRNA synthetase. 3. Enzyme dependence for maximum methionyl-tRNA formation.
    Svensson I
    Biochim Biophys Acta; 1968 Aug; 167(1):179-83. PubMed ID: 4879640
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural and functional roles of the cysteine residues in the alpha subunit of the Escherichia coli tryptophan synthetase. I. Structural roles and reactivity of the cysteine residues.
    Malkinson AM; Hardman JK
    Biochemistry; 1969 Jul; 8(7):2769-76. PubMed ID: 4980105
    [No Abstract]   [Full Text] [Related]  

  • 16. Leucyl-tRNA synthetase. Two forms of the enzyme: role of sulfhydryl groups.
    Rouget P; Chapeville F
    Eur J Biochem; 1971 Dec; 23(3):452-8. PubMed ID: 4333243
    [No Abstract]   [Full Text] [Related]  

  • 17. Cytidine triphosphate synthetase. Covalent intermediates and mechanisms of action.
    Levitzki A; Koshland DE
    Biochemistry; 1971 Aug; 10(18):3365-71. PubMed ID: 4940761
    [No Abstract]   [Full Text] [Related]  

  • 18. The mechanism of reaction of methionyl-tRNA synthetase from Escherichia coli. Interaction of the enzyme with ligands of the amino-acid-activation reaction.
    Blanquet S; Fayat G; Waller JP; Iwatsubo M
    Eur J Biochem; 1972 Jan; 24(3):461-9. PubMed ID: 4621706
    [No Abstract]   [Full Text] [Related]  

  • 19. Dephosphorylation of succinyl coenzyme A synthetase as related to enzyme specificity and catalytic intermediates.
    Robinson JL; Benson RW; Boyer PD
    Biochemistry; 1969 Jun; 8(6):2503-8. PubMed ID: 4895022
    [No Abstract]   [Full Text] [Related]  

  • 20. The asparagine synthetase of Escherichia coli. II. Studies on mechanism.
    Cedar H; Schwartz JH
    J Biol Chem; 1969 Aug; 244(15):4122-7. PubMed ID: 4895362
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.