These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4923069)

  • 1. Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli.
    Harvey RJ
    J Bacteriol; 1970 Nov; 104(2):698-706. PubMed ID: 4923069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecule synthesis in Escherichia coli BB under various growth conditions.
    Chohji T; Sawada T; Kuno S
    Appl Environ Microbiol; 1976 Jun; 31(6):864-9. PubMed ID: 779646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant.
    Bell RM
    J Bacteriol; 1974 Mar; 117(3):1065-76. PubMed ID: 4591941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships among deoxyribonucleic acid, ribonucleic acid, and specific transfer ribonucleic acids in Escherichia coli 15T - at various growth rates.
    Skjold AC; Juarez H; Hedgcoth C
    J Bacteriol; 1973 Jul; 115(1):177-87. PubMed ID: 4577741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular composition during steady-state growth of Escherichia coli B-r.
    Dennis PP; Bremer H
    J Bacteriol; 1974 Jul; 119(1):270-81. PubMed ID: 4600702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of exponential growth after a nutritional shift-up in Escherichia coli B/r: accumulation of deoxyribonucleic acid, ribonucleic acid, and protein.
    Brunschede H; Dove TL; Bremer H
    J Bacteriol; 1977 Feb; 129(2):1020-33. PubMed ID: 320174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Escherichia coli grown in deuterated media.
    Mann LR; Moses V
    Folia Microbiol (Praha); 1971; 16(4):267-84. PubMed ID: 4939356
    [No Abstract]   [Full Text] [Related]  

  • 8. The control of ribonucleic acid synthesis in bacteria. The synthesis and stbility of ribonucleic acid in rifampicin-inhibited cultures of Escherichia coli.
    Gray WJ; Midgley JE
    Biochem J; 1971 Apr; 122(2):161-9. PubMed ID: 4940607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose transport of Escherichia coli growing in glucose-limited continuous culture.
    Hunter IS; Kornberg HL
    Biochem J; 1979 Jan; 178(1):97-101. PubMed ID: 373752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecule synthesis of Escherichia coli BB at a lower or transient growth state.
    Sawada T; Chohji T; Kuno S
    Appl Environ Microbiol; 1977 Dec; 34(6):751-5. PubMed ID: 339834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli.
    Midgley JE; Gray WJ
    Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonucleic acid regulation in amino acid-limited cultures of Escherichia coli grown in a chemostat.
    Atherly AG
    J Bacteriol; 1974 Dec; 120(3):1322-30. PubMed ID: 4612016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures.
    Koch AL; Deppe CS
    J Mol Biol; 1971 Feb; 55(3):549-62. PubMed ID: 4927946
    [No Abstract]   [Full Text] [Related]  

  • 14. Relationship between energy substrate utilization and specific growth rate in Aspergillus nidulans.
    Carter BL; Bull AT; Rowley BI; Pirt SJ
    J Bacteriol; 1971 Oct; 108(1):309-13. PubMed ID: 4399338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction in biosynthesis rate for RNA and protein in a thermosensitive E. coli K12 mutant defective in the Roseman phosphotransferase system.
    Burd GI; Bol'shakova TN; Saprykina TP; Klyucheva VV; Gershanovich VN
    Mol Biol; 1971; 5(3):307-11. PubMed ID: 4949475
    [No Abstract]   [Full Text] [Related]  

  • 16. Nucleic acid and protein synthesis in reconstituted lyophilized Escherichia coli exposed to air.
    Novick O; Israeli E; Kohn A
    J Appl Bacteriol; 1972 Jun; 35(2):185-91. PubMed ID: 4558949
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of ribonucleic acid synthesis in growing bacterial cells. II. Control over the composition of the newly made RNA.
    Nierlich DP
    J Mol Biol; 1972 Dec; 72(3):765-77. PubMed ID: 4573848
    [No Abstract]   [Full Text] [Related]  

  • 18. Transition period following a nutritional shift-up in the bacterium Escherichia coli B/r: stable RNA and protein synthesis.
    Bremer H; Dennis PP
    J Theor Biol; 1975 Aug; 52(2):365-82. PubMed ID: 1105007
    [No Abstract]   [Full Text] [Related]  

  • 19. Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures.
    Natarajan A; Srienc F
    J Microbiol Methods; 2000 Sep; 42(1):87-96. PubMed ID: 11000435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of macromolecules by Escherichia coli near the minimal temperature for growth.
    Shaw MK; Ingraham JL
    J Bacteriol; 1967 Jul; 94(1):157-64. PubMed ID: 5338968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.