These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 492338)

  • 21. Type III collagen can be present on banded collagen fibrils regardless of fibril diameter.
    Keene DR; Sakai LY; Bächinger HP; Burgeson RE
    J Cell Biol; 1987 Nov; 105(5):2393-402. PubMed ID: 2445760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intervertebral disc and tendon: quantitative ultrastructure and differentiation of their collagen fibrils.
    Michna H; Hartmann G
    Z Mikrosk Anat Forsch; 1988; 102(6):1013-24. PubMed ID: 2977871
    [No Abstract]   [Full Text] [Related]  

  • 23. Electron-microscopic study of the collagen fibrils of the rat tail tendon as revealed by freeze-fracture and freeze-etching techniques.
    Gotoh T; Sugi Y
    Cell Tissue Res; 1985; 240(3):529-34. PubMed ID: 2410127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct observation of a transverse periodicity in collagen fibrils.
    Squire JM; Freundlich A
    Nature; 1980 Nov; 288(5789):410-3. PubMed ID: 7432540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure of interfibrillar proteoglycan bridges (shape modules') in extracellular matrix of fibrous connective tissues and their stability in various chemical environments.
    Scott JE; Thomlinson AM
    J Anat; 1998 Apr; 192 ( Pt 3)(Pt 3):391-405. PubMed ID: 9688505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fibril diameters in the extracellular matrix of the periodontal connective tissues of the rat.
    Berkovitz BK; Weaver ME; Shore RC; Moxham BJ
    Connect Tissue Res; 1981; 8(2):127-32. PubMed ID: 6453691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter.
    Birk DE; Fitch JM; Babiarz JP; Doane KJ; Linsenmayer TF
    J Cell Sci; 1990 Apr; 95 ( Pt 4)():649-57. PubMed ID: 2384532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rotary shadowing of collagen monomers, oligomers, and fibrils during tendon fibrillogenesis.
    Fleischmajer R; Perlish JS; Faraggiana T
    J Histochem Cytochem; 1991 Jan; 39(1):51-8. PubMed ID: 1983873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of a discrete axial structure in unimodal collagen fibrils.
    Raspanti M; Reguzzoni M; Protasoni M; Martini D
    Biomacromolecules; 2011 Dec; 12(12):4344-7. PubMed ID: 22066528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of tendon structure and function: regulation of collagen fibrillogenesis.
    Zhang G; Young BB; Ezura Y; Favata M; Soslowsky LJ; Chakravarti S; Birk DE
    J Musculoskelet Neuronal Interact; 2005 Mar; 5(1):5-21. PubMed ID: 15788867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The three-dimensional ultrastructure of the collagen fibers, reticular fibers and elastic fibers: a review].
    Ushiki T
    Kaibogaku Zasshi; 1992 Jun; 67(3):186-99. PubMed ID: 1523957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tip-mediated fusion involving unipolar collagen fibrils accounts for rapid fibril elongation, the occurrence of fibrillar branched networks in skin and the paucity of collagen fibril ends in vertebrates.
    Kadler KE; Holmes DF; Graham H; Starborg T
    Matrix Biol; 2000 Aug; 19(4):359-65. PubMed ID: 10963997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteoglycan:collagen interactions and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues.
    Scott JE
    J Anat; 1990 Apr; 169():23-35. PubMed ID: 2384335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteoglycan-type I collagen fibril interactions in bone and non-calcifying connective tissues.
    Scott JE; Haigh M
    Biosci Rep; 1985 Jan; 5(1):71-81. PubMed ID: 3986311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine structure of collagens and their relation to glucosaminoglycans (GAG).
    Hay ED; Hasty DL; Kiehnau KL
    Suppl Thromb Haemost; 1978; 63():129-51. PubMed ID: 95562
    [No Abstract]   [Full Text] [Related]  

  • 39. Fibroblasts create compartments in the extracellular space where collagen polymerizes into fibrils and fibrils associate into bundles.
    Birk DE; Trelstad RL
    Ann N Y Acad Sci; 1985; 460():258-66. PubMed ID: 3868950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of type I collagen fibrils de novo by the specific enzymic cleavage of pC collagen. The fibrils formed at about 37 degrees C are similar in diameter, roundness, and apparent flexibility to the collagen fibrils seen in connective tissue.
    Kadler KE; Hulmes DJ; Hojima Y; Prockop DJ
    Ann N Y Acad Sci; 1990; 580():214-24. PubMed ID: 2337298
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.