These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 4924009)

  • 1. Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme.
    Romeo D; Hinckley A; Rothfield L
    J Mol Biol; 1970 Nov; 53(3):491-501. PubMed ID: 4924009
    [No Abstract]   [Full Text] [Related]  

  • 2. Reconstitution of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid.
    Romeo D; Girard A; Rothfield L
    J Mol Biol; 1970 Nov; 53(3):475-90. PubMed ID: 4924008
    [No Abstract]   [Full Text] [Related]  

  • 3. The reassociation of lipopolysaccharide, phospholipid, and transferase enzymes of the bacterial cell envelope. Isolation of binary and ternary complexes.
    Weiser MM; Rothfield L
    J Biol Chem; 1968 Mar; 243(6):1320-8. PubMed ID: 4870425
    [No Abstract]   [Full Text] [Related]  

  • 4. Reassembly of a membrane-bound multienzyme system. I. Formation of a particle containing phosphatidylethanolamine, lipopolysaccharide, and two glycosyltransferase enzymes.
    Hinckley ; Müller E; Rothfield L
    J Biol Chem; 1972 Apr; 247(8):2623-8. PubMed ID: 4553446
    [No Abstract]   [Full Text] [Related]  

  • 5. Reconstitution of lipopolysaccharide-phospholipid-transferase enzyme complexes of bacterial cell envelopes.
    Rothfield L; Hinckley A
    Methods Enzymol; 1974; 32():449-59. PubMed ID: 4614003
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies of phospholipid-requiring bacterial enzymes. 3. Purification and properties of uridine diphosphate glucose:lipopolysaccharide glucosyltransferase I.
    Müller E; Hinckley A; Rothfield L
    J Biol Chem; 1972 Apr; 247(8):2614-22. PubMed ID: 4553445
    [No Abstract]   [Full Text] [Related]  

  • 7. Binding of a solubilized membrane ATPase to phospholipid bilayers.
    Redwood WR; Patel BC
    Biochim Biophys Acta; 1974 Aug; 363(1):70-85. PubMed ID: 4277375
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies of a phospholipid-requiring bacterial enzyme. II. The role of phospholipid in the uridine diphosphate galactose: lipopolysaccharide alpha-3-galactosyl transferase reaction.
    Endo A; Rothfield L
    Biochemistry; 1969 Sep; 8(9):3508-15. PubMed ID: 4897944
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose: lipopolysaccharide alpha-3-galactosyl transferase.
    Endo A; Rothfield L
    Biochemistry; 1969 Sep; 8(9):3500-7. PubMed ID: 4898284
    [No Abstract]   [Full Text] [Related]  

  • 10. The interaction of bacterial lipopolysaccharide with phospholipid bilayers and monolayers.
    Benedetto DA; Shands JW; Shah DO
    Biochim Biophys Acta; 1973 Mar; 298(2):145-57. PubMed ID: 4578206
    [No Abstract]   [Full Text] [Related]  

  • 11. Membrane-associated nucleotide sugar reactions. I. Properties of the first enzyme of O antigen synthesis.
    Rundell K; Shuster CW
    J Biol Chem; 1973 Aug; 248(15):5436-42. PubMed ID: 4588681
    [No Abstract]   [Full Text] [Related]  

  • 12. Interactions between lipopolysaccharide and phosphatidylethanolamine in molecular monolayers.
    Fried VA; Rothfield LI
    Biochim Biophys Acta; 1978 Dec; 514(1):69-82. PubMed ID: 363151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of mutants of Salmonella typhimurium lacking glucosyl or galactosyl lipopolysaccharide transferases.
    Osborn MJ
    Nature; 1968 Mar; 217(5132):957-60. PubMed ID: 4868317
    [No Abstract]   [Full Text] [Related]  

  • 14. Reassociation of purified lipopolysaccharide and phospholipid of the bacterial cell envelope: electron microscopic and monolayer studies.
    Rothfield L; Horne RW
    J Bacteriol; 1967 May; 93(5):1705-21. PubMed ID: 5337850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics and cultural properties of mutants of Salmonella typhimurium lacking glucosyl or galactosyl lipopolysaccharide transferases.
    Wilkinson RG; Stocker BA
    Nature; 1968 Mar; 217(5132):955-7. PubMed ID: 4868316
    [No Abstract]   [Full Text] [Related]  

  • 16. The anthranilate synthetase-5-phosphorylribose 1-pyrophosphate phosphoribosyl transferase complex of the tryptophan pathway in Salmonella typhimurium. Purification by the in vitro assembly of its subunits.
    Smith D; Bauerle RH
    Biochemistry; 1969 Apr; 8(4):1451-9. PubMed ID: 4896460
    [No Abstract]   [Full Text] [Related]  

  • 17. A manganese-stimulated endonuclease from Bacillus subtilis.
    Scher B; Dubnau D
    Biochem Biophys Res Commun; 1973 Dec; 55(3):595-602. PubMed ID: 4202547
    [No Abstract]   [Full Text] [Related]  

  • 18. The membrane ATPase of Bacillus megaterium. II. Purification of membrane ATPases and their recombination with membrane.
    Ishida M; Mizushima S
    J Biochem; 1969 Aug; 66(2):133-8. PubMed ID: 4242208
    [No Abstract]   [Full Text] [Related]  

  • 19. Enzymes of phospholipid metabolism: localization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium.
    Bell RM; Mavis RD; Osborn MJ; Vagelos PR
    Biochim Biophys Acta; 1971 Dec; 249(2):628-35. PubMed ID: 5002558
    [No Abstract]   [Full Text] [Related]  

  • 20. Membrane fusion and molecular segregation in phospholipid vesicles.
    Papahadjopoulos D; Poste G; Schaeffer BE; Vail WJ
    Biochim Biophys Acta; 1974 May; 352(1):10-28. PubMed ID: 4859411
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.