These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 4926030)

  • 1. The effect of guanosine 5'-triphosphate analogues on protein synthesis.
    Uno H; Oyabu S; Otsuka E; Ikehara M
    Biochim Biophys Acta; 1971 Jan; 228(1):282-8. PubMed ID: 4926030
    [No Abstract]   [Full Text] [Related]  

  • 2. Stringent control of protein synthesis in E. coli.
    Laffler T; Gallant JA
    Cell; 1974 Sep; 3(1):47-9. PubMed ID: 4607106
    [No Abstract]   [Full Text] [Related]  

  • 3. Inactivation of protein-synthesizing T-factor by N-tosyl-L-phenylalanyl chloromethane.
    Sedlácek J; Jonák J; Rychlík I
    Biochim Biophys Acta; 1971 Dec; 254(3):478-80. PubMed ID: 4944814
    [No Abstract]   [Full Text] [Related]  

  • 4. [On the mechanism of action of 1-nitroso-3-nitro-1-methylguanidine in the induction of mutation. I. Effect of 1-nitroso-3-nitro-1-methylguanidine on the template activity of polyncleotides in cell-free protein synthesis].
    Chandra P; Wacker A; Süssmuth R; Lingens F
    Z Naturforsch B; 1967 May; 22(5):512-7. PubMed ID: 4384854
    [No Abstract]   [Full Text] [Related]  

  • 5. MSI and MSII made on ribosome in idling step of protein synthesis.
    Haseltine WA; Block R; Gilbert W; Weber K
    Nature; 1972 Aug; 238(5364):381-4. PubMed ID: 4559580
    [No Abstract]   [Full Text] [Related]  

  • 6. Binding of guanosine 5'-triphosphate by soluble factors required for polypeptide synthesis.
    Ertel R; Brot N; Redfield B; Allende JE; Weissbach H
    Proc Natl Acad Sci U S A; 1968 Mar; 59(3):861-8. PubMed ID: 4868218
    [No Abstract]   [Full Text] [Related]  

  • 7. Correlation between guanosine tetraphosphate accumulation and degree of amino acid control of ribonucleic acid accumulation during nutritionally slowed growth in Escherichia coli.
    Khan SR; Yamazaki H
    Biochemistry; 1974 Jun; 13(13):2785-8. PubMed ID: 4603219
    [No Abstract]   [Full Text] [Related]  

  • 8. Factor- and guanosine 5'-triphosphate-dependent release of deacylated transfer RNA from 70S ribosomes.
    Kuriki Y; Kaji A
    Proc Natl Acad Sci U S A; 1968 Dec; 61(4):1399-405. PubMed ID: 4884686
    [No Abstract]   [Full Text] [Related]  

  • 9. [Synthesis and properties of adenosine-5' and guanosine-5' phosphohypophosphates, analogs of ATP and GTP].
    Rémy P; Setondji J; Engel ML; Dirheimer G; Ebel JP
    Bull Soc Chim Biol (Paris); 1969; 51(10):1548-9. PubMed ID: 4906613
    [No Abstract]   [Full Text] [Related]  

  • 10. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanism of action of an inhibitor from Proteus vulgaris on cell-free protein synthesis by Escherichia coli B.
    McEvoy JJ; Inniss WE
    Can J Microbiol; 1969 Feb; 15(2):159-64. PubMed ID: 4884792
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms in protein synthesis. XIV. Competitive inhibition of natural mRNA-stimulated amino acid incorporation by aminoacyl-tRNA.
    Scheulen M; Schmidt B; Matthaei H
    Biochim Biophys Acta; 1973 Mar; 299(3):468-71. PubMed ID: 4573080
    [No Abstract]   [Full Text] [Related]  

  • 13. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ; Hanlon JE; Symons RH
    Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate.
    Hamel E; Cashel M
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3250-4. PubMed ID: 4594040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system.
    Nishizuka Y; Lipmann F
    Proc Natl Acad Sci U S A; 1966 Jan; 55(1):212-9. PubMed ID: 4287350
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of inhibition of protein synthesis by spiramycin.
    Ahmed A
    Biochim Biophys Acta; 1968 Aug; 166(1):205-17. PubMed ID: 4972349
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of dihydrostreptomycin on protein synthesis in whole cells and in cell-free extracts of a streptomycin-dependent strain of Escherichia coli B.
    Dixon H; Polglase WJ
    J Bacteriol; 1969 Oct; 100(1):247-53. PubMed ID: 4186510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis.
    Lelong JC; Grunberg-Manago M; Dondon J; Gros D; Gros F
    Nature; 1970 May; 226(5245):505-10. PubMed ID: 4909915
    [No Abstract]   [Full Text] [Related]  

  • 19. Amino acid transfer factors from yeast. II. Interaction of three partially purified protein fractions with guanosine triphosphate.
    Richter D; Hameister H; Petersen HG; Klink F
    Biochemistry; 1968 Oct; 7(10):3753-61. PubMed ID: 4300708
    [No Abstract]   [Full Text] [Related]  

  • 20. The regulation of polyamine synthesis during the stringent control in Escherichia coli.
    Hölttä E; Jänne J; Pispa J
    Biochem Biophys Res Commun; 1974 Aug; 59(3):1104-11. PubMed ID: 4370496
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.