These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 4926673)
1. Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. Lester RL; DeMoss JA J Bacteriol; 1971 Mar; 105(3):1006-14. PubMed ID: 4926673 [TBL] [Abstract][Full Text] [Related]
2. Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. Glaser JH; DeMoss JA J Bacteriol; 1971 Nov; 108(2):854-60. PubMed ID: 4942767 [TBL] [Abstract][Full Text] [Related]
3. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli. Scott RH; DeMoss JA J Bacteriol; 1976 Apr; 126(1):478-86. PubMed ID: 770433 [TBL] [Abstract][Full Text] [Related]
4. Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli. Enoch HG; Lester RL J Bacteriol; 1972 Jun; 110(3):1032-40. PubMed ID: 4555402 [TBL] [Abstract][Full Text] [Related]
5. Nitrate reductase complex of Escherichia coli K-12: participation of specific formate dehydrogenase and cytochrome b1 components in nitrate reduction. Ruiz-Herrera J; DeMoss JA J Bacteriol; 1969 Sep; 99(3):720-9. PubMed ID: 4905536 [TBL] [Abstract][Full Text] [Related]
6. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. Andreesen JR; Ljungdahl LG J Bacteriol; 1973 Nov; 116(2):867-73. PubMed ID: 4147651 [TBL] [Abstract][Full Text] [Related]
7. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. Enoch HG; Lester RL J Biol Chem; 1975 Sep; 250(17):6693-705. PubMed ID: 1099093 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a secondary transcriptional activator for the hyc and nar operons. Self WT; Grunden AM; Hasona A; Shanmugam KT Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():41-55. PubMed ID: 10206709 [TBL] [Abstract][Full Text] [Related]
9. Nitrate reductase complex of Escherichia coli K-12: isolation and characterization of mutants unable to reduce nitrate. Ruiz-Herrera J; Showe MK; DeMoss JA J Bacteriol; 1969 Mar; 97(3):1291-7. PubMed ID: 4887509 [TBL] [Abstract][Full Text] [Related]
10. Reduction and removal of heptavalent technetium from solution by Escherichia coli. Lloyd JR; Cole JA; Macaskie LE J Bacteriol; 1997 Mar; 179(6):2014-21. PubMed ID: 9068649 [TBL] [Abstract][Full Text] [Related]
11. Identification of a new gene, molR, essential for utilization of molybdate by Escherichia coli. Lee JH; Wendt JC; Shanmugam KT J Bacteriol; 1990 Apr; 172(4):2079-87. PubMed ID: 2156810 [TBL] [Abstract][Full Text] [Related]
12. Proton translocation and the respiratory nitrate reductase of Escherichia coli. Garland PB; Downie JA; Haddock BA Biochem J; 1975 Dec; 152(3):547-59. PubMed ID: 5996 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of formate by mycobacteria of the scrofulaceum group. Ishaque M; Kim SJ; Kato L Can J Microbiol; 1978 Dec; 24(12):1548-52. PubMed ID: 747815 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic growth of Escherichia coli on formate by reduction of nitrate, fumarate, and trimethylamine N-oxide. Yamamoto I; Ishimoto M Z Allg Mikrobiol; 1977; 17(3):235-42. PubMed ID: 327708 [TBL] [Abstract][Full Text] [Related]
15. Effects of selenium compounds on formate metabolism and coincidence of selenium-75 incorporation and formic dehydrogenase activity in cell-free preparations of Escherichia coli. Shum AC; Murphy JC J Bacteriol; 1972 Apr; 110(1):447-9. PubMed ID: 4553003 [TBL] [Abstract][Full Text] [Related]
16. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Wagner R; Andreesen JR Arch Microbiol; 1977 Sep; 114(3):219-24. PubMed ID: 911212 [TBL] [Abstract][Full Text] [Related]
17. In vitro incorporation of molybdate into demolybdoproteins in Escherichia coli. Scott RH; Sperl GT; DeMoss JA J Bacteriol; 1979 Feb; 137(2):719-26. PubMed ID: 370097 [TBL] [Abstract][Full Text] [Related]
18. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate. Boonstra J; Sips HJ; Konings WN Eur J Biochem; 1976 Oct; 69(1):35-44. PubMed ID: 791648 [TBL] [Abstract][Full Text] [Related]
19. Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP. Wang H; Gunsalus RP J Bacteriol; 2003 Sep; 185(17):5076-85. PubMed ID: 12923080 [TBL] [Abstract][Full Text] [Related]
20. Localization and characterization of cytochromes from membrane vesicles of Escherichia coli K-12 grown in anaerobiosis with nitrate. Sánchez Crispín JA; Dubourdieu M; Chippaux M Biochim Biophys Acta; 1979 Aug; 547(2):198-210. PubMed ID: 380649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]