These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 4927136)
1. Bacterial cytochromes. II. Functional aspects. Horio T; Kamen MD Annu Rev Microbiol; 1970; 24():399-428. PubMed ID: 4927136 [No Abstract] [Full Text] [Related]
2. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores. Cusanovich MA; Bartsch RG; Kamen MD Biochim Biophys Acta; 1968 Feb; 153(2):397-417. PubMed ID: 4296025 [No Abstract] [Full Text] [Related]
3. [Relation of various species of photosynthesizing bacteria to molecular oxygen]. Gusev MV; Shenderova LV; Kondrat'eva EN Mikrobiologiia; 1969; 38(5):787-92. PubMed ID: 5396578 [No Abstract] [Full Text] [Related]
4. Spectrophotometric studies of the mechanism of photosynthesis. Fork DC; Amesz J Photophysiology; 1970; 5():97-126. PubMed ID: 4146947 [No Abstract] [Full Text] [Related]
5. Light-induced electron transfer reactions and adenosine triphosphate formation by Rhodospirillum rubrum chromatophores. Zaugg WS; Vernon LP; Helmer G Arch Biochem Biophys; 1967 Mar; 119(1):560-71. PubMed ID: 6052446 [No Abstract] [Full Text] [Related]
6. Nature of photochemical reactions in chromatophores of Chromatium D. II. Quantum yield of photooxidation of cytochromes in chromatium chromatophores. Takamiya K; Nishimura M Biochim Biophys Acta; 1974 Dec; 368(3):339-47. PubMed ID: 4451654 [No Abstract] [Full Text] [Related]
7. [Effect of temperature on the phototransformation of purple sulfur bacteria bacteriochlorophylls and isolated chromatophores]. Karapetian NV; Kononenko AA Mikrobiologiia; 1975; 44(3):422-7. PubMed ID: 1160647 [TBL] [Abstract][Full Text] [Related]
8. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes. Parson WW Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977 [No Abstract] [Full Text] [Related]
9. A large photoreactive particle from Chromatium vinosum chromatophores. Halsey YD; Gyers B Biochim Biophys Acta; 1975 May; 387(2):349-67. PubMed ID: 1125294 [TBL] [Abstract][Full Text] [Related]
10. A high potential cytochrome c from Chromatium chromatophores. Cusanovich MA; Bartsch RG Biochim Biophys Acta; 1969 Oct; 189(2):245-55. PubMed ID: 5350450 [No Abstract] [Full Text] [Related]
11. Early chemical events in photosynthesis: kinetics of oxidation of cytochromes of types c or f in cells, chloroplasts, and chromatophores. Chance B; DeVault D; Hildreth WW; Parson WW; Nishimura M Brookhaven Symp Biol; 1966; 19():115-31. PubMed ID: 5966902 [No Abstract] [Full Text] [Related]
12. Light-induced absorption changes in Chromatium subchromatophore particles exhaustively extracted with non-polar solvents. Ke B; Garcia AF; Vernon LP Biochim Biophys Acta; 1973 Jan; 292(1):226-36. PubMed ID: 4705132 [No Abstract] [Full Text] [Related]
13. [Photophosphorylating activity of fragments obtained following rupture of Chromatium minutissimum chromatophores by ultrasound]. Goncharova NV; Evstigneev VB Biokhimiia; 1972; 37(1):221-6. PubMed ID: 5017923 [No Abstract] [Full Text] [Related]
14. Light-induced reduction of pyridine nucleotide and its relation to light-induced electron transport in whole cells of Rhodospirillum rubrum. Govindjee R; Sybesma C Biochim Biophys Acta; 1970 Dec; 223(2):251-60. PubMed ID: 4323515 [No Abstract] [Full Text] [Related]
15. Primary photochemistry and electron transport in Rhodospirillum rubrum. Loach PA; Sekura DL Biochemistry; 1968 Jul; 7(7):2642-9. PubMed ID: 5690721 [No Abstract] [Full Text] [Related]
16. Light-induced electron transport in Chromatium strain D. I. Isolation and characterization of Chromatium chromatophores. Cusanovich MA; Kamen MD Biochim Biophys Acta; 1968 Feb; 153(2):376-96. PubMed ID: 4296024 [No Abstract] [Full Text] [Related]
17. [Functional organization of the electron transport chain of Rhodospirillum rubrum chromatophores in the absence of an exogenous electron donor]. RatynÄ AI; Riznichenko GIu; ChamorovskiÄ SK; Vorob'eva TN; Pyt'eva NF Biofizika; 1979; 24(4):671-5. PubMed ID: 113038 [No Abstract] [Full Text] [Related]
18. New experimental approach to the estimation of rate of electron transfer from the primary to secondary acceptors in the photosynthetic electron transport chain of purple bacteria. Chamorovsky SK; Remennikov SM; Kononenko AA; Venediktov PS; Rubin AB Biochim Biophys Acta; 1976 Apr; 430(1):62-70. PubMed ID: 816385 [TBL] [Abstract][Full Text] [Related]
19. Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium. Case GD; Parson WW Biochim Biophys Acta; 1973 Apr; 292(3):677-84. PubMed ID: 4705448 [No Abstract] [Full Text] [Related]
20. Electron paramagnetic resonance studies on photosynthetic bacteria. I. Properties of photo-induced EPR-signals of Chromatium D. Schleyer H Biochim Biophys Acta; 1968 Feb; 153(2):427-47. PubMed ID: 4296026 [No Abstract] [Full Text] [Related] [Next] [New Search]