These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4927207)

  • 1. High resolution nuclear magnetic resonance studies of hydrogen bonded protons of tRNA in water.
    Kearns DR; Patel DJ; Shulman RG
    Nature; 1971 Jan; 229(5283):338-9. PubMed ID: 4927207
    [No Abstract]   [Full Text] [Related]  

  • 2. [Structure of yeast tRNAPhe molecule].
    Ciesiołka J; Krzyzosiak WJ
    Postepy Biochem; 1984; 30(1-2):71-106. PubMed ID: 6397754
    [No Abstract]   [Full Text] [Related]  

  • 3. A study of secondary and tertiary solution structure of yeast tRNA(Asp) by nuclear magnetic resonance. Assignment of G.U ring NH and hydrogen-bonded base pair proton resonances.
    Robillard GT; Hilbers CW; Reid BR; Gangloff J; Dirheimer G; Shulman RG
    Biochemistry; 1976 May; 15(9):1883-8. PubMed ID: 773428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tertiary hydrogen bonds in the solution structure of transfer RNA.
    Reid BR; Ribeiro NS; Gould G; Robillard G; Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2049-53. PubMed ID: 1094451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution nuclear magnetic resonance study of base pairing in four purified transfer RNA molecules.
    Kearns DR; Patel D; Shulman RG; Yamane T
    J Mol Biol; 1971 Oct; 61(1):265-70. PubMed ID: 5146199
    [No Abstract]   [Full Text] [Related]  

  • 6. NMR evidence for common tertiary structure base pairs in yeast and E. coli tRNA.
    Bolton PH; Kearns DR
    Nature; 1975 May; 255(5506):347-9. PubMed ID: 1093043
    [No Abstract]   [Full Text] [Related]  

  • 7. Assignment of the hydrogen bonded proton resonances in (Escherichia coli) tRNAGlu by sequential melting.
    Hilbers CW; Shulman RG
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3239-42. PubMed ID: 4606251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution NMR study of the melting of yeast tRNA Phe.
    Hilbers CW; Shulman RG; Kim SH
    Biochem Biophys Res Commun; 1973 Dec; 55(3):953-60. PubMed ID: 4586623
    [No Abstract]   [Full Text] [Related]  

  • 9. The isolation and characterization of N-[9-(beta-D-ribofuranosyl)-purin-6-ylcarbamoyl]glycine from yeast transfer RNA.
    Schweizer MP; McGrath K; Baczynskyj L
    Biochem Biophys Res Commun; 1970 Sep; 40(5):1046-52. PubMed ID: 5503779
    [No Abstract]   [Full Text] [Related]  

  • 10. Cytokinin activity in tRNA-Phe.
    Hecht SM; Bock RM; Leonard NJ; Schmitz RY
    Biochem Biophys Res Commun; 1970 Oct; 41(2):435-40. PubMed ID: 5518173
    [No Abstract]   [Full Text] [Related]  

  • 11. Modified nucleoside, 5-carbamoylmethyluridine, located in the first position of the anticodon of yeast valine tRNA.
    Yamamoto N; Yamaizumi Z; Yokoyama S; Miyazawa T; Nishimura S
    J Biochem; 1985 Jan; 97(1):361-4. PubMed ID: 3888974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine.
    Kasai H; Oashi Z; Harada F; Nishimura S; Oppenheimer NJ; Crain PF; Liehr JG; von Minden DL; McCloskey JA
    Biochemistry; 1975 Sep; 14(19):4198-208. PubMed ID: 1101947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed FT-NMR double resonance studies of yeast tRNAPhe: specific nuclear Overhauser effects and reinterpretation of low temperature relaxation data.
    Johnston PD; Redfield AG
    Nucleic Acids Res; 1978 Oct; 5(10):3913-27. PubMed ID: 364421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives.
    Daniel WE; Cohn M
    Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy.
    Salemink PJ; Swarthof T; Hilbers CW
    Biochemistry; 1979 Aug; 18(16):3477-85. PubMed ID: 383144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The occurrence and source of beta-alanine in alkaline hydrolysates of sRNA: a sensitive method for the detection and assay of 5,6-dihydrouracil residues in RNA.
    Magrath DI; Shaw DC
    Biochem Biophys Res Commun; 1967 Jan; 26(1):32-7. PubMed ID: 6030252
    [No Abstract]   [Full Text] [Related]  

  • 17. Evaluation of base-pairing schemes for E. coli 5S RNA by 400 MHz proton nuclear magnetic resonance spectroscopy.
    Burns PD; Luoma GA; Marshall AG
    Biochem Biophys Res Commun; 1980 Sep; 96(2):805-11. PubMed ID: 6158943
    [No Abstract]   [Full Text] [Related]  

  • 18. Proton magnetic resonance spectra of tRNA-Met-f from Thermus thermophilus.
    Kyogoku Y; Inubushi T; Morishima I; Watanabe K; Oshima T; Nishimura S
    Nucleic Acids Res; 1977 Mar; 4(3):585-93. PubMed ID: 325519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study on the proton chemical shifts of hydrogen bonded nucleic acid bases.
    Giessner-Prettre C; Pullman B; Caillet J
    Nucleic Acids Res; 1977 Jan; 4(1):99-116. PubMed ID: 866180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR study of the modified base resonances of tRNA tyr- coli .
    Koehler KM; Schmidt PG
    Biochem Biophys Res Commun; 1973 Jan; 50(2):370-6. PubMed ID: 4569876
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.