These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4927415)

  • 61. [The relationship between hemopoiesis and osteogenesis in several species of rodents].
    Starostin VI; Michurina TV; Sludskaia AI; Khrushchov NG
    Biull Eksp Biol Med; 1976 Feb; 81(2):231-4. PubMed ID: 776256
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparison of autologous marrow injection to shielding in lethal irradiation of the mouse.
    Carsten AL; Cronkite EP
    Proc Soc Exp Biol Med; 1971 Jul; 137(3):948-51. PubMed ID: 4934706
    [No Abstract]   [Full Text] [Related]  

  • 63. [Concentration of acid and alkaline phosphatases in the lymphoid elements of peripheral blood and the hematopoietic organs of intact rats and mice].
    Gol'dberg ED; Karpova GV; Melik-Gaĭkazian EV; Pakhriaeva GN
    Biull Eksp Biol Med; 1978 Feb; 85(2):158-9. PubMed ID: 630086
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The relationship between granulocytic and erythroid repopulating ability.
    Constable TB; Blackett NM
    Exp Hematol; 1974; 2(3):131-7. PubMed ID: 4616841
    [No Abstract]   [Full Text] [Related]  

  • 65. Effect of homologous bone marrow-spleen cell suspension on survival of swine exposed to radiation from a nuclear weapon.
    DANIELL HW; CROSBY WH
    Blood; 1960 Jun; 15():856-62. PubMed ID: 13813979
    [No Abstract]   [Full Text] [Related]  

  • 66. [Rat-mouse heterologous bone marrow graft studied by means of the leukocyte alkaline phosphatase test].
    NICOLAU CT; NICOARA S; GRIGORIU G; APATEANU V
    Stud Cercet Med Interna; 1962; 3():265-73. PubMed ID: 14479524
    [No Abstract]   [Full Text] [Related]  

  • 67. The decrease in long-term marrow repopulating capacity seen after transplantation is not the result of irradiation-induced stromal injury.
    Gardner RV; Astle CM; Harrison DE
    Exp Hematol; 1988 Jan; 16(1):49-54. PubMed ID: 2891558
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thymus regeneration by bone marrow cell suspensions differing in the potential to form early and late spleen colonies.
    Mulder AH; Visser JW; van den Engh GJ
    Exp Hematol; 1985 Sep; 13(8):768-75. PubMed ID: 3930276
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bone marrow, spleen, and thymus regeneration patterns in mice after whole-body irradiation.
    Takada A; Takada Y; Kim U; Ambrus JL
    Radiat Res; 1971 Mar; 45(3):522-35. PubMed ID: 4930011
    [No Abstract]   [Full Text] [Related]  

  • 70. [Effect of bone marrow homotransplantation on the inclusion of P-32 into the proteins of liver, spleen, and bone marrow cells during acute radiation injury].
    Shamraĭ AE
    Vrach Delo; 1971 May; 5():127-9. PubMed ID: 4945979
    [No Abstract]   [Full Text] [Related]  

  • 71. The radiosensitivity of rat bone-marrow cells.
    Comas FV
    Int J Radiat Biol Relat Stud Phys Chem Med; 1970; 17(6):549-57. PubMed ID: 5310735
    [No Abstract]   [Full Text] [Related]  

  • 72. Kinetics of rat bone marrow cells cultured in diffusion chambers: effect of heterologous implantation and irradiation of the host.
    Petersen BH; Meyer T; Tjernshaugen H
    Scand J Haematol; 1974; 13(1):39-47. PubMed ID: 4606711
    [No Abstract]   [Full Text] [Related]  

  • 73. [Influence of thymectomy on the lymphoid regeneration of hematopoietic bone marrow after sublethal irradiation].
    Moens P; Boniver J; Haot J; Delrez M; Courtoy R; Simar LJ
    C R Seances Soc Biol Fil; 1976 Oct; 170(3):698-702. PubMed ID: 135633
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Protection of lethally irradiated animals using the bone marrow of donors irradiated with high-energy protons].
    Koval'cuk LV
    Radiobiol Radiother (Berl); 1969; 10(2):215-22. PubMed ID: 4893726
    [No Abstract]   [Full Text] [Related]  

  • 75. [Morphologic analysis of guinea pig bone regeneration following curettage].
    Gerasimov IuV; Chaĭlakhian RK; Sysoeva LP
    Arkh Anat Gistol Embriol; 1979 Sep; 77(9):86-92. PubMed ID: 496671
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mortality and skin transplantability in x-irradiated mice receiving isologous, homologous or heterologous bone marrow.
    TRENTIN JJ
    Proc Soc Exp Biol Med; 1956; 92(4):688-93. PubMed ID: 13370496
    [No Abstract]   [Full Text] [Related]  

  • 77. Structural and cytological studies on injury and regeneration of the rat bone marrow following total body irradiation.
    Adachi Y
    Bull Tokyo Med Dent Univ; 1966 Mar; 13(1):35-57. PubMed ID: 5218842
    [No Abstract]   [Full Text] [Related]  

  • 78. Long-term bone marrow culture as a stem cell source for transplantation.
    McMillen MA; Simmons RL
    J Surg Res; 1986 Mar; 40(3):193-7. PubMed ID: 2869186
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices.
    Lee YM; Seol YJ; Lim YT; Kim S; Han SB; Rhyu IC; Baek SH; Heo SJ; Choi JY; Klokkevold PR; Chung CP
    J Biomed Mater Res; 2001 Feb; 54(2):216-23. PubMed ID: 11093181
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spleen colony-forming capacity of bone marrow from mice bearing fibrosarcoma.
    Milas L; Tomljanovic M
    Rev Eur Etud Clin Biol; 1971 May; 16(5):462-5. PubMed ID: 4939660
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.