These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4927497)

  • 21. The possible involvement of peptidyl transferase in the termination step of protein biosynthesis.
    Vogel Z; Zamir A; Elson D
    Biochemistry; 1969 Dec; 8(12):5161-8. PubMed ID: 4904043
    [No Abstract]   [Full Text] [Related]  

  • 22. Protein synthesis in mycoplasma.
    Tourtellotte ME; Pollack ME; Nalewaik RP
    Ann N Y Acad Sci; 1967 Jul; 143(1):130-8. PubMed ID: 5233752
    [No Abstract]   [Full Text] [Related]  

  • 23. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ; Hanlon JE; Symons RH
    Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602
    [No Abstract]   [Full Text] [Related]  

  • 24. Biochemistry. Sense and sensitivity--controlling the ribosome.
    Sachs MS; Geballe AP
    Science; 2002 Sep; 297(5588):1820-1. PubMed ID: 12228706
    [No Abstract]   [Full Text] [Related]  

  • 25. Release of tRNA from ribosomes by a factor other than G factor.
    Ishitsuka H; Kaji A
    Proc Natl Acad Sci U S A; 1970 May; 66(1):168-73. PubMed ID: 4921327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of antibiotics on the substrate binding to the acceptor and donor site of ribosomal peptidyltransferase of an erythromycin-resistant mutant of Escherichia coli.
    Cerná J; Rychlík I
    Biochim Biophys Acta; 1972 Dec; 287(2):292-300. PubMed ID: 4609472
    [No Abstract]   [Full Text] [Related]  

  • 27. Further studies on the mechanism of erythromycin action.
    Tanaka S; Otaka T; Kaji A
    Biochim Biophys Acta; 1973 Nov; 331(1):128-40. PubMed ID: 4586628
    [No Abstract]   [Full Text] [Related]  

  • 28. Inhibition of the chloramphenicol binding to ribosomes by the sparsomycin-induced binding of aminoacyl-tRNA to ribosomes.
    Yukioka M; Morisawa S
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1444-7. PubMed ID: 4562157
    [No Abstract]   [Full Text] [Related]  

  • 29. Peptidyl-transferase activity of Escherichia coli ribosomes digested by ribonuclease T 1 .
    Cerná J; Rychlík I; Jonák J
    Eur J Biochem; 1973 May; 34(3):551-6. PubMed ID: 4123724
    [No Abstract]   [Full Text] [Related]  

  • 30. Localization of sparsomycin action to the peptide-bond-forming step.
    Jayaraman J; Goldberg IH
    Biochemistry; 1968 Jan; 7(1):418-21. PubMed ID: 4921281
    [No Abstract]   [Full Text] [Related]  

  • 31. Mechanism of action of bottromycin in polypeptide biosynthesis.
    Lin YC; Tanaka N
    J Biochem; 1968 Jan; 63(1):1-7. PubMed ID: 4871736
    [No Abstract]   [Full Text] [Related]  

  • 32. [Capability of N-acylaminoacyl-tRNA, covalently bound by an N-acyl radical to a ribosome near the peptidyl-transferase center, to initiate polypeptide synthesis].
    Budker VG; Girshovich AS; Skobel'tsyna LM
    Dokl Akad Nauk SSSR; 1972 Nov; 207(1):215-7. PubMed ID: 4565402
    [No Abstract]   [Full Text] [Related]  

  • 33. Inhibitors of protein synthesis at the ribosome level. Studies on their site of action.
    Vazquez D
    Life Sci; 1967 Feb; 6(4):381-6. PubMed ID: 5340250
    [No Abstract]   [Full Text] [Related]  

  • 34. Initiation of polyphenylalanine synthesis by N-acetylphenylalanyl-SRNA.
    Lucas-Lenard J; Lipmann F
    Proc Natl Acad Sci U S A; 1967 Apr; 57(4):1050-7. PubMed ID: 5340585
    [No Abstract]   [Full Text] [Related]  

  • 35. Affinity labeling of the ribonucleic acid component adjacent to the peptidyl recognition center of peptidyl transferase in Escherichia coli ribosomes.
    Yukioka M; Hatayama T; Morisawa S
    Biochim Biophys Acta; 1975 May; 390(2):192-208. PubMed ID: 239742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate specificity of ribosomal peptidyl transferase: 2'(3')-O-aminoacyl nucleosides as acceptors of the peptide chain on the amino acid site.
    Rychlík I; Cerná J; Chládek S; Zemlicka J; Haladová Z
    J Mol Biol; 1969 Jul; 43(1):13-24. PubMed ID: 4897787
    [No Abstract]   [Full Text] [Related]  

  • 37. Mitochondrial antibiotic resistance in yeast: ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin.
    Grivell LA; Netter P; Borst P; Slonimski PP
    Biochim Biophys Acta; 1973 Jun; 312(2):358-67. PubMed ID: 4579232
    [No Abstract]   [Full Text] [Related]  

  • 38. The comparative study on the effects of chloramphenicol, erythromycin and lincomycin on polylysine synthesis in an Escherichia coli cell-free system.
    Teraoka H; Tanaka K; Tamaki M
    Biochim Biophys Acta; 1969 Feb; 174(2):776-8. PubMed ID: 4887382
    [No Abstract]   [Full Text] [Related]  

  • 39. Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A.
    Otaka T; Kaji A
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2649-52. PubMed ID: 1101261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition.
    Siibak T; Peil L; Xiong L; Mankin A; Remme J; Tenson T
    Antimicrob Agents Chemother; 2009 Feb; 53(2):563-71. PubMed ID: 19029332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.