These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 4928608)

  • 1. Prevalence of Clostridium botulinum in semipreserved meat products.
    Abrahamsson K; Riemann H
    Appl Microbiol; 1971 Mar; 21(3):543-4. PubMed ID: 4928608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The detection of Clostridium botulinum type E in smoked fish products in the Pacific Northwest.
    Hayes S; Craig JM; Pilcher KS
    Can J Microbiol; 1970 Mar; 16(3):207-9. PubMed ID: 4908559
    [No Abstract]   [Full Text] [Related]  

  • 3. Incidence study of spores of Clostridium botulinum in convenience foods.
    Insalata NF; Witzeman SJ; Fredericks GJ; Sunga FC
    Appl Microbiol; 1969 Apr; 17(4):542-4. PubMed ID: 4890746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners.
    Bowen VG; Cerveny JG; Deibel RH
    Appl Microbiol; 1974 Mar; 27(3):605-6. PubMed ID: 4596392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth characteristics of type E Clostridium botulinum in the temperature range of 34 degrees F to 50 degrees F. Annual report, June 29, 1962-June 28, 1963. TID-24778.
    TID Rep; 1967 Jul; ():1-86. PubMed ID: 4890187
    [No Abstract]   [Full Text] [Related]  

  • 6. Clostridium botulinum type E: growth and toxin production in food.
    Ajmal M
    J Appl Bacteriol; 1968 Mar; 31(1):124-32. PubMed ID: 4870166
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of prepared foods in plastic packages for Clostridium botulinum.
    Taclindo C; Nygaard GS; Bodily HL
    Appl Microbiol; 1967 Mar; 15(2):426-30. PubMed ID: 5339843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium botulinum and its importance in fishery products.
    Hobbs G
    Adv Food Res; 1976; 22():135-85. PubMed ID: 790905
    [No Abstract]   [Full Text] [Related]  

  • 11. Establishment of a heat inactivation curve for Clostridium botulinum 62A toxin in beef broth.
    Losikoff ME
    Appl Environ Microbiol; 1978 Aug; 36(2):386-8. PubMed ID: 29566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores.
    Ito KA; Chen JK; Lerke PA; Seeger ML; Unverferth JA
    Appl Environ Microbiol; 1976 Jul; 32(1):121-4. PubMed ID: 9898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry.
    Gibson AM; Bratchell N; Roberts TA
    J Appl Bacteriol; 1987 Jun; 62(6):479-90. PubMed ID: 3305458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival and outgrowth of Clostridium botulinum type E spores in smoked fish.
    Christiansen LN; Deffner J; Foster EM; Sugiyama H
    Appl Microbiol; 1968 Jan; 16(1):133-7. PubMed ID: 4865899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Case of isolating Cl. botulinum type C from home-made lard and salted pork].
    Kashintseva IA
    Vopr Pitan; 1973; 32(4):80-1. PubMed ID: 4592705
    [No Abstract]   [Full Text] [Related]  

  • 16. The problems and results of an incidence study of the spores of Clostridium botulinum in convenience foods.
    Insalata NF; Witzeman JS; Berman JH
    Health Lab Sci; 1970 Jan; 7(1):54-8. PubMed ID: 4905874
    [No Abstract]   [Full Text] [Related]  

  • 17. Growth characteristics of type E Clostridium botulinum in the temperature range of 34 to 50 degrees F. TID-24781.
    TID Rep; 1966 Jan; ():1-57. PubMed ID: 4905221
    [No Abstract]   [Full Text] [Related]  

  • 18. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF; Mason DR; Peck MW
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium botulinum type F: isolation from venison jerky.
    Midura TF; Nygaard GS; Wood RM; Bodily HL
    Appl Microbiol; 1972 Aug; 24(2):165-7. PubMed ID: 4561099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Time of toxin appearance in relation to detectable changes in canned meat artificially contaminated with Clostridium botulinum B (preliminary report)].
    Palec W; Mierzejewski J
    Rocz Panstw Zakl Hig; 1981; 32(3):223-7. PubMed ID: 7031828
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.