These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 4928608)

  • 21. An improved cooked meat medium for the detection of Clostridium botulinum.
    Quagliaro DA
    J Assoc Off Anal Chem; 1977 May; 60(3):563-9. PubMed ID: 323216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incidence of clostridia in meat products.
    Skjelvåle RL; Tjaberg TB
    Nord Vet Med; 1974 Jun; 26(6):387-91. PubMed ID: 4368805
    [No Abstract]   [Full Text] [Related]  

  • 23. Recent developments in botulism research.
    Foster EM; Sugiyama H
    Health Lab Sci; 1967 Oct; 4(4):193-8. PubMed ID: 4862979
    [No Abstract]   [Full Text] [Related]  

  • 24. Rapid identification of Clostridium botulinum and botulinal toxin in food.
    Rodriguez A; Dezfulian M
    Folia Microbiol (Praha); 1997; 42(2):149-51. PubMed ID: 9306659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The significance of Clostridium botulinum type E in the application of radiation-pasteurization process to Pacific crab meat and flounder. TID-24883.
    Eklund MW; Poysky FT; Wieler DI
    TID Rep; 1965 May; ():1-90. PubMed ID: 4902858
    [No Abstract]   [Full Text] [Related]  

  • 26. Incidence of Clostridium botulinum in crabmeat from the blue crab.
    Kautter DA; Leblanc AJ; LeBlanc AJ+LEBLANC AJ; Lynt RK
    Appl Microbiol; 1974 Oct; 28(4):722. PubMed ID: 4607823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of reduced levels or suppression of sodium nitrite on the outgrowth and toxinogenesis of psychrotrophic Clostridium botulinum Group II type B in cooked ham.
    Lebrun S; Van Nieuwenhuysen T; Crèvecoeur S; Vanleyssem R; Thimister J; Denayer S; Jeuge S; Daube G; Clinquart A; Fremaux B
    Int J Food Microbiol; 2020 Dec; 334():108853. PubMed ID: 32932195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Type B botulism demonstrated through toxicological and bacteriological studies].
    Ralovich B; Barna K
    Zentralbl Bakteriol Orig; 1966 Aug; 200(4):509-19. PubMed ID: 4865959
    [No Abstract]   [Full Text] [Related]  

  • 29. Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods.
    Kautter DA; Solomon HM
    J Assoc Off Anal Chem; 1977 May; 60(3):541-5. PubMed ID: 323214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxin occurrence time in relation to sensorial changes in meat cans contaminated with Clostridium botulinum type B endospores.
    Palec W
    Acta Microbiol Pol; 1996; 45(1):75-83. PubMed ID: 8795258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Psychrotrophic clostridia mediated gas and botulinal toxin production in vacuum-packed chilled meat.
    Moorhead SM; Bell RG
    Lett Appl Microbiol; 1999 Feb; 28(2):108-12. PubMed ID: 10063639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system.
    Rayman K; Malik N; Hurst A
    Appl Environ Microbiol; 1983 Dec; 46(6):1450-2. PubMed ID: 6362566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth and toxin production of Clostridium botulinum type E in milk.
    Read RB; Bradshaw JG; Francis DW
    J Dairy Sci; 1970 Sep; 53(9):1183-6. PubMed ID: 4917019
    [No Abstract]   [Full Text] [Related]  

  • 34. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.
    Chea FP; Chen Y; Montville TJ; Schaffner DW
    J Food Prot; 2000 Aug; 63(8):1071-9. PubMed ID: 10945583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymerase chain reaction for the rapid identification of Clostridium botulinum type A strains and detection in food samples.
    Fach P; Hauser D; Guillou JP; Popoff MR
    J Appl Bacteriol; 1993 Sep; 75(3):234-9. PubMed ID: 8244901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Survey of pH and water activity in acidified bottled vegetables and meats (home processed) in relation to the potential growth of Clostridium botulinum].
    Mazzobre MF; Schebor C; Burin L; Chirife J
    Rev Argent Microbiol; 2000; 32(2):63-70. PubMed ID: 10885005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma-ray sterilization and residual toxicity studies of ground beef inoculated with spores of Clostridium botulinum.
    KEMPE LL; GRAIKOSKI JT
    Appl Microbiol; 1962 Jan; 10(1):31-6. PubMed ID: 14455088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive modelling of food safety with particular reference to Clostridium botulinum in model cured meat systems.
    Roberts TA; Jarvis B
    Soc Appl Bacteriol Symp Ser; 1983; 11():85-95. PubMed ID: 6359448
    [No Abstract]   [Full Text] [Related]  

  • 39. Recovery of a strain of Clostridium botulinum producing both neurotoxin A and neurotoxin B from canned macrobiotic food.
    Franciosa G; Fenicia L; Pourshaban M; Aureli P
    Appl Environ Microbiol; 1997 Mar; 63(3):1148-50. PubMed ID: 9055430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic factors in meat products counteracting botulinogenic conditions.
    Blanche Koelensmid WA; van Rhee R
    Antonie Van Leeuwenhoek; 1968; 34(3):287-97. PubMed ID: 4891323
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.