These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4929227)

  • 1. Metabolism of long-chain fatty acids in the rumen.
    Viviani R
    Adv Lipid Res; 1970; 8():267-346. PubMed ID: 4929227
    [No Abstract]   [Full Text] [Related]  

  • 2. The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect on biohydrogenation.
    Hawke JC
    Biochim Biophys Acta; 1971 Nov; 248(2):167-70. PubMed ID: 5130449
    [No Abstract]   [Full Text] [Related]  

  • 3. Lipid metabolism in the rumen.
    Harfoot CG
    Prog Lipid Res; 1978; 17(1):21-54. PubMed ID: 370840
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemical composition of microbial matter in the rumen.
    Czerkawski JW
    J Sci Food Agric; 1976 Jul; 27(7):621-32. PubMed ID: 957610
    [No Abstract]   [Full Text] [Related]  

  • 5. Long-chain bases in the sphingolipids of bovine milk and kidney, rumen bacteria, rumen protozoa, hay and concentrate.
    Morrison WR
    Biochim Biophys Acta; 1973 Jul; 316(1):98-107. PubMed ID: 4737329
    [No Abstract]   [Full Text] [Related]  

  • 6. Formation of octadecadienoic acid by rumen liquor of calves, cows and sheep in vitro.
    Sklan D; Volcani R; Budowski P
    J Dairy Sci; 1971 Apr; 54(4):515-9. PubMed ID: 5570087
    [No Abstract]   [Full Text] [Related]  

  • 7. [Metabolism of long chain fatty acids in the rumen].
    Viviani R
    Minerva Med; 1967 May; 58(35):1683-4. PubMed ID: 6028222
    [No Abstract]   [Full Text] [Related]  

  • 8. Rumen modeling: rumen input-output balance models.
    Reichl JR; Baldwin RL
    J Dairy Sci; 1975 Jun; 58(6):879-90. PubMed ID: 1141481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing the extent of biohydrogenation of linoleic acid by rumen micro-organisms in vitro.
    Harfoot CG; Noble RC; Moore JH
    J Sci Food Agric; 1973 Aug; 24(8):961-70. PubMed ID: 4731354
    [No Abstract]   [Full Text] [Related]  

  • 10. Trends and innovations in rumen microbiology.
    Hobson PN
    Soc Appl Bacteriol Symp Ser; 1976; 4():125-40. PubMed ID: 5779
    [No Abstract]   [Full Text] [Related]  

  • 11. Physical form of the diet in relation to rumen fermentation.
    Thomson DJ
    Proc Nutr Soc; 1972 Sep; 31(2):127-34. PubMed ID: 4563286
    [No Abstract]   [Full Text] [Related]  

  • 12. Competition between food particles and rumen bacteria in the uptake of long-chain fatty acids and triglycerides.
    Harfoot CG; Crouchman ML; Noble RC; Moore JH
    J Appl Bacteriol; 1974 Dec; 37(4):633-41. PubMed ID: 4436162
    [No Abstract]   [Full Text] [Related]  

  • 13. DDT- 14 C-metabolism by rumen bacteria and protozoa in vitro.
    Kutches AJ; Church DC
    J Dairy Sci; 1971 Apr; 54(4):540-3. PubMed ID: 5570091
    [No Abstract]   [Full Text] [Related]  

  • 14. Lipid synthesis by rumen microorganisms. II. Further characterization of the effects of methionine.
    Patton RA; McCarthy RD; Griel LC
    J Dairy Sci; 1970 Apr; 53(4):460-5. PubMed ID: 5433690
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolism of peptides by rumen microorganisms.
    Wright DE
    Appl Microbiol; 1967 May; 15(3):547-50. PubMed ID: 6035045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of nutrient digestion, absorption and outflow in the rumen: model description.
    Dijkstra J; Neal HD; Beever DE; France J
    J Nutr; 1992 Nov; 122(11):2239-56. PubMed ID: 1331382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of biohydrogenation intermediates and changes in the rumen protozoal population after micro algae feeding to dairy cattle.
    Boeckaert C; Boon N; Abdulsudi IZ; Verstraete W; Fievez V
    Commun Agric Appl Biol Sci; 2006; 71(1):83-6. PubMed ID: 17191479
    [No Abstract]   [Full Text] [Related]  

  • 18. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.
    He Y; Qiu Q; Shao T; Niu W; Xia C; Wang H; Li Q; Gao Z; Yu Z; Su H; Cao B
    J Agric Food Chem; 2017 Dec; 65(50):10859-10867. PubMed ID: 29179547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation.
    Kim EJ; Sanderson R; Dhanoa MS; Dewhurst RJ
    J Dairy Sci; 2005 Sep; 88(9):3220-30. PubMed ID: 16107412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows.
    Wu Z; Ohajuruka OA; Palmquist DL
    J Dairy Sci; 1991 Sep; 74(9):3025-34. PubMed ID: 1779056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.