These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4929433)

  • 1. An alteration in ribosome function caused by equimolar binding of erythromycin.
    Teraoka H; Tanaka K
    Biochim Biophys Acta; 1971 Mar; 232(3):509-13. PubMed ID: 4929433
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of spermine on the binding of erythromycin to Escherichia coli ribosomes and the peptidyl-transfer reaction.
    Teraoka H; Tanaka K
    Eur J Biochem; 1973 Mar; 33(3):578-83. PubMed ID: 4571502
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of high salt concentration on fidelity of translation by Escherichia coli ribosomes.
    Chomczyński P; Szafrański P
    Acta Biochim Pol; 1971; 18(2):163-70. PubMed ID: 4939214
    [No Abstract]   [Full Text] [Related]  

  • 4. Isolation of yeast mitochondrial ribosomes highly active in protein synthesis.
    Grivell LA; Reijnders L; Borst P
    Biochim Biophys Acta; 1971 Sep; 247(1):91-103. PubMed ID: 4946284
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of macrolides on peptide-bond formation and translocation.
    Mao JC; Robishaw EE
    Biochemistry; 1971 May; 10(11):2054-61. PubMed ID: 4935106
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from Escherichia coli B and erythromycin-resistant muytant of Escherichia coli B.
    Cerná J; Jonák J; Rychlík I
    Biochim Biophys Acta; 1971 Jun; 240(1):109-21. PubMed ID: 4940152
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparative studies on the mechanism of action of lincomycin, streptomycin, and erythromycin.
    Igarashi K; Ishitsuka H; Kaji A
    Biochem Biophys Res Commun; 1969 Oct; 37(3):499-504. PubMed ID: 4900140
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXII. Binding of aminoacyl-oligonucleotides to ribosomes.
    Lessard JL; Pestka S
    J Biol Chem; 1972 Nov; 247(21):6901-8. PubMed ID: 4563071
    [No Abstract]   [Full Text] [Related]  

  • 9. Reactivation in vitro of inactive ribosomes from stationary phase Escherichia coli.
    Scheps R; Wax R; Revel M
    Biochim Biophys Acta; 1971 Feb; 232(1):140-50. PubMed ID: 4930201
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of antibiotics on the substrate binding to the acceptor and donor site of ribosomal peptidyltransferase of an erythromycin-resistant mutant of Escherichia coli.
    Cerná J; Rychlík I
    Biochim Biophys Acta; 1972 Dec; 287(2):292-300. PubMed ID: 4609472
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosoms from Escherichia coli.
    Pestka S
    J Biol Chem; 1972 Jul; 247(14):4669-78. PubMed ID: 4557851
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of temperature and monovalent cations on reactivity of the donor and acceptor sites on mammalian ribosomes.
    Baliga BS; Schechtman MG; Nolan RD; Munro HN
    Biochim Biophys Acta; 1973 Jun; 312(2):349-57. PubMed ID: 4723234
    [No Abstract]   [Full Text] [Related]  

  • 13. Vernamycin A inhibits the non-enzymatic binding of fMet-tRNA to ribosomes.
    Ennis HL; Duffy KE
    Biochim Biophys Acta; 1972 Sep; 281(1):93-102. PubMed ID: 4563532
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action.
    Pestka S
    Arch Biochem Biophys; 1970 Jan; 136(1):80-8. PubMed ID: 4907015
    [No Abstract]   [Full Text] [Related]  

  • 15. Properties of ribosomes from Streptomyces erythreus and Streptomyces griseus.
    Teraoka H; Tanaka K
    J Bacteriol; 1974 Oct; 120(1):316-21. PubMed ID: 4138441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis of polyphenylalanine on ribosomes to which erythromycin is bound.
    Odom OW; Picking WD; Tsalkova T; Hardesty B
    Eur J Biochem; 1991 Jun; 198(3):713-22. PubMed ID: 1904819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of tRNA from ribosomes by a factor other than G factor.
    Ishitsuka H; Kaji A
    Proc Natl Acad Sci U S A; 1970 May; 66(1):168-73. PubMed ID: 4921327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low affinity for chloramphenicol of erythromycin resistant Escherichia coli ribosomes having an altered protein component.
    Tanaka K; Tamaki M; Takata R; Osawa S
    Biochem Biophys Res Commun; 1972 Mar; 46(6):1979-83. PubMed ID: 4553152
    [No Abstract]   [Full Text] [Related]  

  • 19. Reversal of the inhibitory action of chloramphenicol on the ribosomal peptidyl transfer reaction by erythromycin.
    Teraoka H
    Biochim Biophys Acta; 1970 Aug; 213(2):535-7. PubMed ID: 4927497
    [No Abstract]   [Full Text] [Related]  

  • 20. Enhancement of the phenylalanyl-oligonucleotide binding to the peptidyl recognition center of ribosomal peptidyltransferase and inhibition of the chloramphenicol binding to ribosomes.
    Yukioka M; Morisawa S
    Biochim Biophys Acta; 1971 Dec; 254(2):304-15. PubMed ID: 4944565
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.