BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 4930756)

  • 41. Intermittent positive-pressure breathing in chronic obstructive pulmonary disease.
    Lefcoe N; Carter P
    Can Med Assoc J; 1970 Aug; 103(3):279-81. PubMed ID: 4914982
    [No Abstract]   [Full Text] [Related]  

  • 42. Physical training in severe chronic obstructive lung disease. II. Observations on gas exchange.
    Brundin A
    Scand J Respir Dis; 1974; 55(1):37-46. PubMed ID: 4853636
    [No Abstract]   [Full Text] [Related]  

  • 43. Intermittent mandatory ventilation; is synchronization important?
    Heenan TJ; Downs JB; Douglas ME; Ruiz BC; Jumper L
    Chest; 1980 May; 77(5):598-602. PubMed ID: 6767582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physiologic consequences of positive end-expiratory pressure (PEEP) ventilation.
    Powers SR; Mannal R; Neclerio M; English M; Marr C; Leather R; Ueda H; Williams G; Custead W; Dutton R
    Ann Surg; 1973 Sep; 178(3):265-72. PubMed ID: 4580970
    [No Abstract]   [Full Text] [Related]  

  • 45. Blood flow to the lung and gas exchange.
    West JB
    Anesthesiology; 1974 Aug; 41(2):124-38. PubMed ID: 4604168
    [No Abstract]   [Full Text] [Related]  

  • 46. Haemodynamic effects of intermittent positive-pressure ventilation with and without an end-inspiratory pause.
    Nordström L
    Acta Anaesthesiol Scand Suppl; 1972; 47():29-56. PubMed ID: 4561011
    [No Abstract]   [Full Text] [Related]  

  • 47. Treatment of bronchospasm in respiratory failure by sustaining the positive phase of the intermittent positive pressure.
    Nealon TF; Sandler SC; Prorok J; Lane B
    Am Rev Respir Dis; 1968 Feb; 97(2):211-6. PubMed ID: 4866655
    [No Abstract]   [Full Text] [Related]  

  • 48. Modification of intrapulmonary blood shunt by end-- expiratory pressure application in patients with acute respiratory failure.
    McMahon SM; Halprin GM
    Chest; 1971 May; 59():Suppl:27S+. PubMed ID: 4930296
    [No Abstract]   [Full Text] [Related]  

  • 49. The mechanism of the "lung lesion" in shock.
    Ratliff JL; Fletcher JR; Hirsch EF; Kopriva CJ
    Adv Exp Med Biol; 1971 Oct; 23(0):203-14. PubMed ID: 5164854
    [No Abstract]   [Full Text] [Related]  

  • 50. Adequate cardio-respiratory functions in mechanically ventilated dog.
    Poyart CF; Gaudebout C; Blayo MC; Vallois JM; Pocidalo JJ
    Respir Physiol; 1970 Jun; 9(3):318-28. PubMed ID: 5269130
    [No Abstract]   [Full Text] [Related]  

  • 51. Does spontaneous ventilation with IMV protect from PEEP-induced cardiac output depression?
    Zarins CK; Bayne CG; Rice CL; Peters RM; Virgilio RW
    J Surg Res; 1977 Mar; 22(3):299-304. PubMed ID: 402505
    [No Abstract]   [Full Text] [Related]  

  • 52. Studies of pulmonary insufficiency in non-thoracic trauma.
    Powers SR; Burdge R; Leather R; Monaco V; Newell J; Sardar S; Smith EJ
    J Trauma; 1972 Jan; 12(1):1-14. PubMed ID: 4550453
    [No Abstract]   [Full Text] [Related]  

  • 53. Effect of hemorrhagic shock on the surface activity of the dog lung.
    Oyarzún M; Vergara G; Motles E
    Acta Physiol Lat Am; 1974; 24(3):250-7. PubMed ID: 4480139
    [No Abstract]   [Full Text] [Related]  

  • 54. The role of the central nervous system in shock: the centroneurogenic etiology of the respiratory distress syndrome.
    Moss G
    Crit Care Med; 1974 Jul; 2(4):181-5. PubMed ID: 4855065
    [No Abstract]   [Full Text] [Related]  

  • 55. Arterial blood gases during assisted ventilation in patients with chronic respiratory failure. II. Changes in the partial pressure of oxygen (PaO2).
    Zieliński J
    Pol Med J; 1970; 9(5):1132-9. PubMed ID: 4928574
    [No Abstract]   [Full Text] [Related]  

  • 56. Haemodynamic and respiratory changes accompanying haemorrhagic shock in thoracotomized dogs.
    Pénzes I; Troján I; Tanos B; Kecskés L; Vajtai G; Kulka F
    Acta Chir Acad Sci Hung; 1977; 18(1):59-73. PubMed ID: 596073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Breathing mechanics during respirator treatment. Influence of respiratory frequency and minute volume.
    Hedenstierna G
    Scand J Respir Dis; 1972; 53(3):149-60. PubMed ID: 4559607
    [No Abstract]   [Full Text] [Related]  

  • 58. The pathophysiology of irreversible hemorrhagic shock in monkeys.
    Rutherford RB; Trow RS
    J Surg Res; 1973 Jun; 14(6):538-50. PubMed ID: 4196706
    [No Abstract]   [Full Text] [Related]  

  • 59. "Permissive hypoventilation" in a swine model of hemorrhagic shock.
    Taghavi S; Jayarajan SN; Ferrer LM; Vora H; McKee C; Milner RE; Gaughan JP; Dujon J; Sjoholm LO; Pathak A; Rappold JF; Santora TA; Houser SR; Goldberg AJ
    J Trauma Acute Care Surg; 2014 Jul; 77(1):14-9. PubMed ID: 24977749
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of hemodynamic responses of two experimental shock models with clinical hemorrhage.
    Bassin R; Vladeck BC; Kim SI; Shoemaker WC
    Surgery; 1971 May; 69(5):722-9. PubMed ID: 5575499
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.