These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 4930859)

  • 21. Uptake of 14C-labelled succinate, L(+)-dihydroxysuccinate, L-monohydroxysuccinate, citrate, alpha-ketoglutarate, and D-glucose by washed mycelium of Claviceps purpurea.
    Taber WA
    Mycologia; 1971; 63(2):290-307. PubMed ID: 5576434
    [No Abstract]   [Full Text] [Related]  

  • 22. Transport of tricarboxylic acids in Salmonella typhimurium.
    Imai K; Iijima T; Hasegawa T
    J Bacteriol; 1973 Jun; 114(3):961-5. PubMed ID: 4576411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production by Salmonella typhimurium of 2,3-dihydroxybenzoylserine, and its stimulation of growth in human serum.
    Wilkins TD; Lankford CE
    J Infect Dis; 1970 Feb; 121(2):129-36. PubMed ID: 4905647
    [No Abstract]   [Full Text] [Related]  

  • 24. Isolation of transport mutants in bacteria.
    Ames GF
    Methods Enzymol; 1974; 32():849-56. PubMed ID: 4614010
    [No Abstract]   [Full Text] [Related]  

  • 25. Maturation of 5-S RNA in Salmonella typhimurium.
    Raué HA; Gruber M
    Biochim Biophys Acta; 1971 Aug; 246(1):11-9. PubMed ID: 4941744
    [No Abstract]   [Full Text] [Related]  

  • 26. Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes.
    Prival MJ; Magasanik B
    J Biol Chem; 1971 Oct; 246(20):6288-96. PubMed ID: 4331387
    [No Abstract]   [Full Text] [Related]  

  • 27. Transport of alpha-glucosides in Saccharomyces carlsbergensis.
    de Kroon RA
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:I33-4. PubMed ID: 5312039
    [No Abstract]   [Full Text] [Related]  

  • 28. Metabolic regulation of aminoacyl-tRNA synthetase formation in bacteria.
    Parker J; Neidhardt FC
    Biochem Biophys Res Commun; 1972 Oct; 49(2):495-501. PubMed ID: 4565494
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of chlorine, antibiotics, beta-propiolactone, acids, and washing on Salmonella typhimurium on eviscerated fryer chickens.
    Thomson JE; Banwart GJ; Sanders DH; Mercuri AJ
    Poult Sci; 1967 Jan; 46(1):146-50. PubMed ID: 5340207
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of glucose and other carbon compounds on the transport of alpha-methylglucoside in Escherichia coli K12.
    Halpern YS; Lupo M
    Biochim Biophys Acta; 1966 Sep; 126(1):163-7. PubMed ID: 5339313
    [No Abstract]   [Full Text] [Related]  

  • 31. Transport of thiamine and 4-methyl-5-hydroxyethylthiazole by Salmonella typhimurium.
    Bellion E; Lash TD; McKellar BR
    Biochim Biophys Acta; 1983 Nov; 735(3):331-6. PubMed ID: 6357278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Citrate transport in Salmonella typhimurium: studies with 2-fluoro-L-erythro-citrate as a substrate.
    Ashton DM; Sweet GD; Somers JM; Kay WW
    Can J Biochem; 1980 Oct; 58(10):797-803. PubMed ID: 7006757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Patterns of glycolysis and oxidative metabolism in Salmonella typhi and typhimurium of different virulence].
    Larionova TI; Kudlaĭ DG; Petrovskaia BG
    Vopr Med Khim; 1966; 12(2):169-76. PubMed ID: 4878797
    [No Abstract]   [Full Text] [Related]  

  • 34. Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan.
    Rensch U; Nishino K; Klein G; Kehrenberg C
    Int J Antimicrob Agents; 2014 Aug; 44(2):179-80. PubMed ID: 25059442
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibition of beta-galactoside transport by substrates of the glucose transport system in Escherichia coli.
    Winkler HH; Wilson TH
    Biochim Biophys Acta; 1967; 135(5):1030-51. PubMed ID: 4863902
    [No Abstract]   [Full Text] [Related]  

  • 36. The effect of triazole on cysteine biosynthesis in Salmonella typhimurium.
    Hulanicka D; Klopotowski T; Smith DA
    J Gen Microbiol; 1972 Sep; 72(2):291-301. PubMed ID: 4562307
    [No Abstract]   [Full Text] [Related]  

  • 37. Arabinose transport in araC- strains of Escherichia B-r.
    Singer J; Englesberg E
    Biochim Biophys Acta; 1971 Dec; 249(2):498-505. PubMed ID: 4332413
    [No Abstract]   [Full Text] [Related]  

  • 38. Correlations between fluorescence, x-ray diffraction, and physiological properties in cytoplasmic membrane vesicles isolated from Escherichia coli.
    Shechter E; Gulik-Krzywicki T; Kaback HR
    Biochim Biophys Acta; 1972 Aug; 274(2):466-77. PubMed ID: 4340260
    [No Abstract]   [Full Text] [Related]  

  • 39. Profile of the enzymes of the Krebs cycle in Salmonella typhimurium during the utilization of succinate, acetate, and citrate for growth.
    Parada JL; Carrillo-Castañeda G; Ortega MV
    Rev Latinoam Microbiol; 1973; 15(1):29-36. PubMed ID: 4581663
    [No Abstract]   [Full Text] [Related]  

  • 40. Kinetic characterization and regulation of phosphoenolpyruvate-dependent methyl alpha-D-glucopyranoside transport by Salmonella typhimurium membrane vesicles.
    Liu KD; Roseman S
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7142-5. PubMed ID: 6359164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.