BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

830 related articles for article (PubMed ID: 4934602)

  • 1. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ; Hanlon JE; Symons RH
    Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602
    [No Abstract]   [Full Text] [Related]  

  • 2. A simple assay for protein chain termination using natural peptidyl-tRNA.
    Menninger JR
    Biochim Biophys Acta; 1971 Jun; 240(2):237-43. PubMed ID: 4934601
    [No Abstract]   [Full Text] [Related]  

  • 3. Chloramphenicol and protein synthesis in mammalian cells.
    Zelkowitz L; Arimura GK; Yunis AA
    J Lab Clin Med; 1968 Apr; 71(4):596-609. PubMed ID: 4870610
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of protein synthesis in the reticulocytes by aminoacyl adenosine.
    Harbon S; Chapeville F
    Eur J Biochem; 1970 Apr; 13(2):375-83. PubMed ID: 5439939
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of G factor in protein synthesis. Studies on a temperature-sensitive Escherichia coli mutant with an altered G factor.
    Felicetti L; Tocchini-Valentini GP; Di Matteo GF
    Biochemistry; 1969 Aug; 8(8):3428-32. PubMed ID: 4309207
    [No Abstract]   [Full Text] [Related]  

  • 6. The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli.
    Schlessinger D; Mangiarotti G; Apirion D
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1782-9. PubMed ID: 4867673
    [No Abstract]   [Full Text] [Related]  

  • 7. The sequence of reactions leading to the synthesis of a peptide bond on reticulocyte ribosomes.
    Hardesty B; Culp W; McKeehan W
    Cold Spring Harb Symp Quant Biol; 1969; 34():331-45. PubMed ID: 5266171
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of siomycin on protein synthesizing activity of Escherichia coli ribosomes.
    Tanaka K; Watanabe S; Teraoka H; Tamaki M
    Biochem Biophys Res Commun; 1970; 39(6):1189-93. PubMed ID: 4934927
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 23. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes.
    Lessard JL; Pestka S
    J Biol Chem; 1972 Nov; 247(21):6909-12. PubMed ID: 4563072
    [No Abstract]   [Full Text] [Related]  

  • 10. [Elongation and termination of polypeptide chains].
    Chapeville F; Haenni AL
    Bull Soc Chim Biol (Paris); 1969; 51(10):1459-77. PubMed ID: 4984616
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of an aminoacyl-tRNA-GTP-protein complex in polypeptide synthesis.
    Ravel JM; Shorey RL; Garner CW; Dawkins RC; Shive W
    Cold Spring Harb Symp Quant Biol; 1969; 34():321-30. PubMed ID: 4909508
    [No Abstract]   [Full Text] [Related]  

  • 12. Reactions of N-acetylphenylalanyl transfer RNA with rat-liver ribosomes.
    Siler J; Moldave K
    Biochim Biophys Acta; 1969 Nov; 195(1):130-7. PubMed ID: 4901828
    [No Abstract]   [Full Text] [Related]  

  • 13. On the catalytic center of peptidyl transfer: a part of the 50 S ribosome structure.
    Staehelin T; Maglott DM; Monro RE
    Cold Spring Harb Symp Quant Biol; 1969; 34():39-48. PubMed ID: 4909512
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of tRNA with ribosomes--binding and release of tRNA.
    Kaji A; Igarashi K; Ishitsuka H
    Cold Spring Harb Symp Quant Biol; 1969; 34():167-77. PubMed ID: 4909495
    [No Abstract]   [Full Text] [Related]  

  • 15. Fidelity in protein synthesis. The role of the ribosome.
    Friedman SM; Berezney R; Weinstein IB
    J Biol Chem; 1968 Oct; 243(19):5044-8. PubMed ID: 4878431
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural requirements of inhibition of polyphenylalanine synthesis by aminoacyl and nucleotidyl analogues of puromycin.
    Symons RH; Harris RJ; Clarke LP; Wheldrake JF; Elliott WH
    Biochim Biophys Acta; 1969 Mar; 179(1):248-50. PubMed ID: 4892120
    [No Abstract]   [Full Text] [Related]  

  • 17. Sparsomycin requirement for inhibiting peptide-bond formation.
    Busiello E; Di Girolamo M
    Biochim Biophys Acta; 1973 Jul; 312(3):581-90. PubMed ID: 4579633
    [No Abstract]   [Full Text] [Related]  

  • 18. Peptide-bond formation on the ribosome. A comparison of the acceptor-substrate specificity of peptidyl transferase in bacterial and mammalian ribosomes using puromycin analogues.
    Eckermann DJ; Greenwell P; Symons RH
    Eur J Biochem; 1974 Feb; 41(3):547-54. PubMed ID: 4593966
    [No Abstract]   [Full Text] [Related]  

  • 19. Aminoacyl-tRNA-Tu-GTP interaction with ribosomes.
    Weissbach H; Redfield B; Brot N
    Arch Biochem Biophys; 1971 Aug; 145(2):676-84. PubMed ID: 4942109
    [No Abstract]   [Full Text] [Related]  

  • 20. Translation of the genetic message.
    Ochoa S
    Naturwissenschaften; 1968 Nov; 55(11):505-14. PubMed ID: 4882370
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 42.