BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 49350)

  • 1. Active transport of manganese in isolated membrane vesicles of Bacillus subtilis.
    Bhattacharyya P
    J Bacteriol; 1975 Jul; 123(1):123-7. PubMed ID: 49350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis.
    Bisschop A; Doddema H; Konings WN
    J Bacteriol; 1975 Nov; 124(2):613-22. PubMed ID: 171251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium transport in membrane vesicles of Bacillus subtilis.
    de Vrij W; Bulthuis R; Postma E; Konings WN
    J Bacteriol; 1985 Dec; 164(3):1294-300. PubMed ID: 3934142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of reduced nicotinamide adenine dinucleotide oxidase activity with menadione in membrane vesicles from the menaquinone-deficient Bacillus subtilis aro D. Relation between electron transfer and active transport.
    Bisschop A; Konings WN
    Eur J Biochem; 1976 Aug; 67(2):357-65. PubMed ID: 823014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-ion stimulated amino acid uptake in membrane vesicles of alkalophilic Bacillus no. 8-1.
    Kitada M; Horikoshi K
    J Biochem; 1980 Dec; 88(6):1757-64. PubMed ID: 6780545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis.
    Bisschop A; Bergsma J; Konings WN
    Eur J Biochem; 1979 Jan; 93(2):369-74. PubMed ID: 218814
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 9. Facilitated transport of calcium by cells and subcellular membranes of Bacillus subtilis and Escherichia coli.
    Silver S; Toth K; Scribner H
    J Bacteriol; 1975 Jun; 122(3):880-5. PubMed ID: 807559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The involvement of the membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells.
    Yamamoto S; Kawasaki T
    Biochim Biophys Acta; 1981 Jun; 644(2):192-200. PubMed ID: 7260073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese transport in Bacillus subtilis W23 during growth and sporulation.
    Eisenstadt E; Fisher S; Der CL; Silver S
    J Bacteriol; 1973 Mar; 113(3):1363-72. PubMed ID: 4632400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between reduced nicotinamide adenine dinucleotide oxidation and amino acid transport in membrane vesicles from Bacillus subtilis.
    Bisschop A; de Jong L; Lima Costa ME; Konings WN
    J Bacteriol; 1975 Mar; 121(3):807-13. PubMed ID: 234948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of manganese accumulation and exchange in Bacillus subtilis W23.
    Fisher S; Buxbaum L; Toth K; Eisenstadt E; Silver S
    J Bacteriol; 1973 Mar; 113(3):1373-80. PubMed ID: 4347971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy coupling in the uptake of hexose phosphates by Escherichia coli.
    Essenberg RC; Kornberg HL
    J Biol Chem; 1975 Feb; 250(3):939-45. PubMed ID: 46228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis.
    Tsai KJ; Yoon KP; Lynn AR
    J Bacteriol; 1992 Jan; 174(1):116-21. PubMed ID: 1530844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG; Gitter BD; Rowe JJ
    J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dependence of Bacillus subtilis cell respiration on monovalent cations].
    Samuilov VD; Khakimov SA
    Biokhimiia; 1991 Jul; 56(7):1209-14. PubMed ID: 1718449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of staphylococcin 1580 on cells and membrane vesicles of Bacillus subtilis W23.
    Weerkamp A; Vogels GD
    Biochim Biophys Acta; 1978 Mar; 539(3):386-97. PubMed ID: 415763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium transport in Bacillus subtilis W23 during growth and sporulation.
    Scribner H; Eisenstadt E; Silver S
    J Bacteriol; 1974 Mar; 117(3):1224-30. PubMed ID: 4205194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.