These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4935316)

  • 21. Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study.
    Ünlü G; Nielsen B; Ionita C
    Probiotics Antimicrob Proteins; 2015 Dec; 7(4):259-74. PubMed ID: 26341641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat injury and recovery of vegetative cells of Clostridium botulinum type E.
    Pierson MD; Payne SL; Ades GL
    Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation between radiation resistance and salt sensitivity of spores of five strains of Clostridium botulinum types A, B, and E.
    Kiss I; Rhee CO; Grecz N; Roberts TA; Farkas J
    Appl Environ Microbiol; 1978 Mar; 35(3):533-9. PubMed ID: 345971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacteriocin susceptibility of Clostridium perfringens: a provisional typing schema.
    Mahony DE
    Appl Microbiol; 1974 Aug; 28(2):172-6. PubMed ID: 4368445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF
    Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enrichment, isolation, and cultural characteristics of marine strains of Clostridium botulinum type C.
    Segner WP; Schmidt CF; Boltz JK
    Appl Microbiol; 1971 Dec; 22(6):1017-24. PubMed ID: 4944800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative studies of an asporogenic mutant and a wild type strain of Clostridium botulinum type E 1 .
    Emeruwa AC; Hawirko RZ
    Can J Microbiol; 1972 Jan; 18(1):29-34. PubMed ID: 4551615
    [No Abstract]   [Full Text] [Related]  

  • 29. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ.
    Meaney CA; Cartman ST; McClure PJ; Minton NP
    Anaerobe; 2015 Aug; 34():86-93. PubMed ID: 25937262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteolytic mutants obtained from Clostridium botulinum type E.
    Nakane A; Iida H
    Appl Environ Microbiol; 1977 Jul; 34(1):99-101. PubMed ID: 329766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity.
    Anellis A; Berkowitz D; Kemper D; Rowley DB
    Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of intracellular glucan in endogenous fermentation and spore maturation in Clostridium botulinum type E.
    Strasdine GA
    Can J Microbiol; 1972 Feb; 18(2):211-7. PubMed ID: 4553163
    [No Abstract]   [Full Text] [Related]  

  • 33. Bacteriocins of phytopathogenic Corynebacterium species.
    Gross DC; Vidaver AK
    Can J Microbiol; 1979 Mar; 25(3):367-74. PubMed ID: 455152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clostridium perfringens. I. Sporulation in a biphasic glucose-ion-exchange resin medium.
    Clifford WJ; Anellis A
    Appl Microbiol; 1971 Nov; 22(5):856-61. PubMed ID: 4332043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of Linnocuicina 819, a bacteriocin produced by Listeria innocua.
    Mollerach ME; Ogueta SB; De Torres RA
    Microbiologica; 1988 Jul; 11(3):219-24. PubMed ID: 3050374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis.
    Ghanem FM; Ridpath AC; Moore WE; Moore LV
    J Clin Microbiol; 1991 Jun; 29(6):1114-24. PubMed ID: 1864927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nature and properties of a Staphylococcus epidermidis bacteriocin.
    Jetten AM; Vogels GD
    J Bacteriol; 1972 Oct; 112(1):243-50. PubMed ID: 5079064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacteriocin production by Carnobacterium piscicola LV 61.
    Schillinger U; Stiles ME; Holzapfel WH
    Int J Food Microbiol; 1993 Nov; 20(3):131-47. PubMed ID: 8312140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiation of Clostridium botulinum types A, B, and E by pyrolysis-gas-liquid chromatography.
    Cone RD; Lechowich RV
    Appl Microbiol; 1970 Jan; 19(1):138-45. PubMed ID: 4905944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical classification of Clostridium botulinum type C and D strains and their nontoxigenic derivatives.
    Oguma K; Yamaguchi T; Sudou K; Yokosawa N; Fujikawa Y
    Appl Environ Microbiol; 1986 Feb; 51(2):256-60. PubMed ID: 3513703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.