These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 4936435)
1. Aminoacylation and polypeptide synthesis with tRNA lacking ribothymidine. Svensson I; Isaksson L; Henningsson A Biochim Biophys Acta; 1971 May; 238(2):331-7. PubMed ID: 4936435 [No Abstract] [Full Text] [Related]
2. Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Gualerzi C; Pon CL; Kaji A Biochem Biophys Res Commun; 1971 Dec; 45(5):1312-9. PubMed ID: 4944357 [No Abstract] [Full Text] [Related]
3. The effect of high salt concentration on fidelity of translation by Escherichia coli ribosomes. Chomczyński P; Szafrański P Acta Biochim Pol; 1971; 18(2):163-70. PubMed ID: 4939214 [No Abstract] [Full Text] [Related]
4. Effects of macrolides on peptide-bond formation and translocation. Mao JC; Robishaw EE Biochemistry; 1971 May; 10(11):2054-61. PubMed ID: 4935106 [No Abstract] [Full Text] [Related]
5. Mechanism of inhibition of protein synthesis by spiramycin. Ahmed A Biochim Biophys Acta; 1968 Aug; 166(1):205-17. PubMed ID: 4972349 [No Abstract] [Full Text] [Related]
6. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli. Stern R; Gonano F; Fleissner E; Littauer UZ Biochemistry; 1970 Jan; 9(1):10-8. PubMed ID: 4903881 [No Abstract] [Full Text] [Related]
7. Release of ribosome bound transfer RNA by enzymatic digestion of messenger RNA. Ishitsuka H; Kaji A Biochim Biophys Acta; 1972 Feb; 262(1):75-87. PubMed ID: 4552903 [No Abstract] [Full Text] [Related]
8. Purification of an Escherichia coli leucine suppressor transfer ribonucleic acid and its aminoacylation by the homologous leucyl-transfer ribonucleic acid synthetase. Hayashi H; Söll D J Biol Chem; 1971 Aug; 246(16):4951-4. PubMed ID: 4941862 [No Abstract] [Full Text] [Related]
9. Regulatory mechanisms and protein synthesis. X. Codon recognition on 30 S ribosomes. Pestka S; Nirenberg M J Mol Biol; 1966 Oct; 21(1):145-71. PubMed ID: 5338993 [No Abstract] [Full Text] [Related]
10. In vitro polypeptide synthesis in brain. Goodwin F; Shafritz D; Weissbach H Arch Biochem Biophys; 1969 Mar; 130(1):183-90. PubMed ID: 4888277 [No Abstract] [Full Text] [Related]
11. Characteristics of N-Ac-Phe-tRNA binding and its correlation with internal aminoacyl-tRNA recognition. Springer M; Grunberg-Manago M Biochem Biophys Res Commun; 1972 Apr; 47(2):477-84. PubMed ID: 4575689 [No Abstract] [Full Text] [Related]
12. Specific binding of sRNA to ribosomes during polypeptide synthesis and the nature of peptidyl sRNA. Kuriki Y; Kaji A J Mol Biol; 1967 May; 25(3):407-23. PubMed ID: 5340693 [No Abstract] [Full Text] [Related]
13. Isolation and characterization of two acidic proteins from the 50S subunit required for GTPase activities of both EF G and EF T. Sander G; Marsh RC; Parmeggiani A Biochem Biophys Res Commun; 1972 May; 47(4):866-73. PubMed ID: 4337326 [No Abstract] [Full Text] [Related]
14. [Elongation and termination of polypeptide chains]. Chapeville F; Haenni AL Bull Soc Chim Biol (Paris); 1969; 51(10):1459-77. PubMed ID: 4984616 [No Abstract] [Full Text] [Related]
15. The coding nature of valyl-transfer RNA binding to ribosomes during methionine starvation in E. coli 113-3. Huang HH; Ma J; Johnson BC Biochem Biophys Res Commun; 1971 May; 43(4):847-53. PubMed ID: 4935288 [No Abstract] [Full Text] [Related]
16. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. Gordon J J Biol Chem; 1969 Oct; 244(20):5680-6. PubMed ID: 4310602 [No Abstract] [Full Text] [Related]
17. Amino acylaminonucleoside inhibitors of protein synthesis. II. Effect on oligophenylalanine formation. Coutsogeorgopoulos C Biochim Biophys Acta; 1971 Jun; 240(1):137-50. PubMed ID: 4940153 [No Abstract] [Full Text] [Related]
18. Purification of two valine transfer ribonucleic acid species from Escherichia coli and their coding properties. Bhaduri S; Bose KK; Chatterjee NK; Gupta NK J Biol Chem; 1971 May; 246(9):3030-6. PubMed ID: 4928896 [No Abstract] [Full Text] [Related]
19. Role of 5S ribosomal RNA in polypeptide synthesis. Siddiqui MA; Hosokawa K Biochem Biophys Res Commun; 1969 Aug; 36(5):711-20. PubMed ID: 4980101 [No Abstract] [Full Text] [Related]
20. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli. Kwan CN; Apirion D; Schlessinger D Biochemistry; 1968 Jan; 7(1):427-33. PubMed ID: 4921282 [No Abstract] [Full Text] [Related] [Next] [New Search]