These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 4939759)
1. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. Ron EZ; Shani M J Bacteriol; 1971 Aug; 107(2):397-400. PubMed ID: 4939759 [TBL] [Abstract][Full Text] [Related]
2. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. Ron EZ; Davis BD J Bacteriol; 1971 Aug; 107(2):391-6. PubMed ID: 4939758 [TBL] [Abstract][Full Text] [Related]
3. In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures. Gur E; Biran D; Gazit E; Ron EZ Mol Microbiol; 2002 Dec; 46(5):1391-7. PubMed ID: 12453224 [TBL] [Abstract][Full Text] [Related]
4. Growth rate of Enterobacteriaceae at elevated temperatures: limitation by methionine. Ron EZ J Bacteriol; 1975 Oct; 124(1):243-6. PubMed ID: 1100601 [TBL] [Abstract][Full Text] [Related]
5. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Butterworth PH; Bloch K Eur J Biochem; 1970 Feb; 12(3):496-501. PubMed ID: 4392505 [No Abstract] [Full Text] [Related]
6. Effect of elevated temperatures on protein synthesis in Escherichia coli. Patterson D; Gillespie D J Bacteriol; 1972 Dec; 112(3):1177-83. PubMed ID: 4565533 [TBL] [Abstract][Full Text] [Related]
7. Probing the active site of homoserine trans-succinylase. Rosen R; Becher D; Büttner K; Biran D; Hecker M; Ron EZ FEBS Lett; 2004 Nov; 577(3):386-92. PubMed ID: 15556615 [TBL] [Abstract][Full Text] [Related]
8. Transport of biosynthetic intermediates: regulation of homoserine and threonine uptake in Escherichia coli. Templeton BA; Savageau MA J Bacteriol; 1974 Oct; 120(1):114-20. PubMed ID: 4609123 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein. Ron EZ; Alajem S; Biran D; Grossman N Antonie Van Leeuwenhoek; 1990 Oct; 58(3):169-74. PubMed ID: 2256677 [No Abstract] [Full Text] [Related]
10. High-level production of -galactosidase by Escherichia coli merodiploids. Fowler AV J Bacteriol; 1972 Nov; 112(2):856-60. PubMed ID: 4563980 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations. Pugh EL; Wassef MK; Kates M Can J Biochem; 1971 Aug; 49(8):953-8. PubMed ID: 4941084 [No Abstract] [Full Text] [Related]
12. The synthesis of -galactosidase in Escherichia coli in the presence of methionine analogues. Spízek J; Techniková Z; Benes J; Janecek J Folia Microbiol (Praha); 1972; 17(2):143-50. PubMed ID: 4552834 [No Abstract] [Full Text] [Related]
13. Partial purification and properties of D-desthiobiotin synthetase from Escherichia coli. Cheeseman P; Pai CH J Bacteriol; 1970 Nov; 104(2):726-33. PubMed ID: 4923070 [TBL] [Abstract][Full Text] [Related]
14. The enzymic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Brush A; Paulus H Biochem Biophys Res Commun; 1971 Nov; 45(3):735-41. PubMed ID: 5001847 [No Abstract] [Full Text] [Related]
15. Transport of biosynthetic intermediates: homoserine and threonine uptake in Escherichia coli. Templeton BA; Savageau MA J Bacteriol; 1974 Mar; 117(3):1002-9. PubMed ID: 4591940 [TBL] [Abstract][Full Text] [Related]
16. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli. Murai T; Tokushige M; Nagai J; Katsuki H Biochem Biophys Res Commun; 1971 May; 43(4):875-81. PubMed ID: 4397922 [No Abstract] [Full Text] [Related]
17. A soluble enzyme from Escherichia coli which catalyzes the transfer of leucine and phenylalanine from tRNA to acceptor proteins. Leibowitz MJ; Soffer RL Biochem Biophys Res Commun; 1969 Jul; 36(1):47-53. PubMed ID: 4894363 [No Abstract] [Full Text] [Related]
18. Control of methionine biosynthesis in Escherichia coli by proteolysis. Biran D; Gur E; Gollan L; Ron EZ Mol Microbiol; 2000 Sep; 37(6):1436-43. PubMed ID: 10998174 [TBL] [Abstract][Full Text] [Related]
19. Temperature control of phospholipid biosynthesis in Escherichia coli. Sinensky M J Bacteriol; 1971 May; 106(2):449-55. PubMed ID: 4324806 [TBL] [Abstract][Full Text] [Related]
20. O-SUCCINYLHOMOSERINE AS AN INTERMEDIATE IN THE SYNTHESIS OF CYSTATHIONINE BY ESCHERICHIA COLI. ROWBURY RJ; WOODS DD J Gen Microbiol; 1964 Sep; 36():341-58. PubMed ID: 14217349 [No Abstract] [Full Text] [Related] [Next] [New Search]