These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 4940764)

  • 21. Correlation between the level of vitamin-B12-dependent methionine synthetase and intracellular concentration of vitamin B12 in some bacteria.
    Omori H; Nakatani K; Shimizu S; Fukui S
    Eur J Biochem; 1974 Aug; 47(1):207-18. PubMed ID: 4215653
    [No Abstract]   [Full Text] [Related]  

  • 22. Role of methionine in the regulation of the synthesis of serine hydroxymethyltransferase in Escherichia coli.
    Dev IK; Harvey RJ
    J Biol Chem; 1984 Jul; 259(13):8402-6. PubMed ID: 6376505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the role of S-adenoxylmethionine in the vitamin B12 dependent methionine biosynthesis.
    Rüdiger H; Jaenicke L
    Eur J Biochem; 1969 Oct; 10(3):557-60. PubMed ID: 4899929
    [No Abstract]   [Full Text] [Related]  

  • 24. Escherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):745-66. PubMed ID: 4886252
    [No Abstract]   [Full Text] [Related]  

  • 25. Inhibition of growth of Escherichia coli and of homoserine O-transsuccinylase by alpha-methylmethionine.
    Schlesinger S
    J Bacteriol; 1967 Aug; 94(2):327-32. PubMed ID: 5341861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymic synthesis of methionine: formation of a radioactive cobamide enzyme with N5-methyl-14C-tetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1967 Mar; 119(1):572-9. PubMed ID: 4861150
    [No Abstract]   [Full Text] [Related]  

  • 27. THE ROLE OF VITAMIN B12 IN METHYL TRANSFER TO HOMOCYSTEINE.
    BUCHANAN JM; ELFORD HL; LOUGHLIN RE; MCDOUGALL BM; ROSENTHAL S
    Ann N Y Acad Sci; 1964 Apr; 112():756-73. PubMed ID: 14167310
    [No Abstract]   [Full Text] [Related]  

  • 28. Unusual growth characteristics of a methionine-cyano-B12 auxotroph of Escherichia coli.
    Dickerman H; Taylor RT; Weissbach H
    J Bacteriol; 1967 Nov; 94(5):1609-15. PubMed ID: 4862198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new type of histidine regulatory mutant in Escherichia coli.
    Patthy L; Dénes G
    Biochem Biophys Res Commun; 1971 Jun; 43(6):1246-51. PubMed ID: 4328043
    [No Abstract]   [Full Text] [Related]  

  • 31. The methionine-repressible homoserine dehydrogenase and aspartokinase activities of Escherichia coli K 12. Preparation of the homogeneous protein catalyzing the two activities. Molecular weight of the native enzyme and of its subunits.
    Falcoz-Kelly F; van Rapenbusch R; Cohen GN
    Eur J Biochem; 1969 Mar; 8(1):146-52. PubMed ID: 4889171
    [No Abstract]   [Full Text] [Related]  

  • 32. Folic acid and the methylation of homocysteine by Bacillus subtilis.
    Salem AR; Pattison JR; Foster MA
    Biochem J; 1972 Feb; 126(4):993-1004. PubMed ID: 4627401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of methionine methyl groups.
    Jaenicke L; Rüdiger H
    Fed Proc; 1971; 30(1):160-6. PubMed ID: 4321981
    [No Abstract]   [Full Text] [Related]  

  • 34. Escherichia coli B cobalamin methyltransferase: ability of diaphorases and lipoamide dehydrogenases to function as reducing agents.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Jul; 139(1):149-63. PubMed ID: 4319457
    [No Abstract]   [Full Text] [Related]  

  • 35. Formation of the N5-methyltetrahydrofolate-homocysteine methyltransferase holoenzyme from apoenzyme and adenosyl-B 12.
    Rosales F; Ritari SJ; Sakami W
    Biochem Biophys Res Commun; 1970 Jul; 40(2):271-6. PubMed ID: 4319824
    [No Abstract]   [Full Text] [Related]  

  • 36. Vitamin B 12 dependent methionine biosynthesis in cultured mammalian cells.
    Mangum JH; Murray BK; North JA
    Biochemistry; 1969 Sep; 8(9):3496-9. PubMed ID: 5387523
    [No Abstract]   [Full Text] [Related]  

  • 37. Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):728-44. PubMed ID: 4886251
    [No Abstract]   [Full Text] [Related]  

  • 38. Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity.
    Mudd SH; Uhlendorf BW; Freeman JM; Finkelstein JD; Shih VE
    Biochem Biophys Res Commun; 1972 Jan; 46(2):905-12. PubMed ID: 5057914
    [No Abstract]   [Full Text] [Related]  

  • 39. Role of S-adenosylmethionine in methionine biosynthesis in yeast.
    Botsford JL; Parks LW
    J Bacteriol; 1967 Oct; 94(4):966-71. PubMed ID: 4293082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. THE ROLE OF VITAMIN B12 IN METHIONINE BIOSYNTHESIS IN AVIAN LIVER.
    DICKERMAN H; REDFIELD BG; BIERI JG; WEISSBACH H
    J Biol Chem; 1964 Aug; 239():2545-52. PubMed ID: 14235533
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.