BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4941470)

  • 1. Stereospecificity of the Escherichia coli valyl-RNA synthetase in the ATP- 32 PPi exchange reaction.
    Owens SL; Bell FE
    J Mol Biol; 1968 Nov; 38(1):145-6. PubMed ID: 4941470
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of a thermal inactivation technique to obtain binding constants for the Escherichia coli valyl-tRNA synthetase.
    Chuang HY; Bell FE
    Arch Biochem Biophys; 1972 Oct; 152(2):502-14. PubMed ID: 4344127
    [No Abstract]   [Full Text] [Related]  

  • 3. A comparison of purified valyl-transfer ribonucleic acid synthetase from Bacillus stearothermophilus and from Escherichia coli.
    Wilkinson S; Knowles JR
    Biochem J; 1974 May; 139(2):391-8. PubMed ID: 4614793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosyl-tRNA synthetase of Escherichia coli B. Binding of various ligands.
    Chousterman S; Chapeville F
    Eur J Biochem; 1973 May; 35(1):51-6. PubMed ID: 4576576
    [No Abstract]   [Full Text] [Related]  

  • 5. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C; Schmitter JM; Fukui T; Tagaya M; Blanquet S
    Biochemistry; 1990 Dec; 29(51):11266-73. PubMed ID: 2271710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The formation of ATP from adenosine 5'-phosphoroimidazolide and pyrophosphate catalyzed by valyl-tRNA-synthetase].
    Biriukov AI; Osipova TI; Khomutov RM
    Biokhimiia; 1976 Oct; 41(10):1905-6. PubMed ID: 192333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Kula MR
    Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysyl tRNA synthetase of Escherichia coli B: formation and reactions of ATP-enzyme and lysyl-AMP-enzyme complexes.
    Hele P; Barber R
    Biochim Biophys Acta; 1972 Jan; 258(1):319-31. PubMed ID: 4333590
    [No Abstract]   [Full Text] [Related]  

  • 9. Seryl transfer ribonucleic acid synthetase of Escherichia coli B. Purification, subunit structure, and behavior in the acylation reaction.
    Boeker EA; Hays AP; Cantoni GL
    Biochemistry; 1973 Jun; 12(13):2379-83. PubMed ID: 4350948
    [No Abstract]   [Full Text] [Related]  

  • 10. Seryl transfer ribonucleic acid synthetase from Escherichia coli. Substrate binding and chemical modification of cysteinyl residues.
    Waterson RM; Clarke SJ; Kalousek F; Konigsberg WH
    J Biol Chem; 1973 Jun; 248(12):4181-8. PubMed ID: 4576131
    [No Abstract]   [Full Text] [Related]  

  • 11. Cation requirements of isoleucyl-tRNA synthetase from Escherichia coli.
    Kayne MS; Cohn M
    Biochem Biophys Res Commun; 1972 Feb; 46(3):1285-91. PubMed ID: 4334974
    [No Abstract]   [Full Text] [Related]  

  • 12. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate.
    Jakubowski H
    Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of the valyl ribonucleic acid synthetase from Escherichia coli in the binding of valine analogues.
    Owens SL; Bell FE
    J Biol Chem; 1970 Nov; 245(21):5515-23. PubMed ID: 4319560
    [No Abstract]   [Full Text] [Related]  

  • 14. Order of binding of substrate to valyl-tRNA synthetase from Bacillus stearothermophilus in amino acid activation reaction.
    Kakitani M; Tonomura B; Hiromi K
    Biochem Int; 1987 Apr; 14(4):597-603. PubMed ID: 3453086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. I. Purification and properties.
    Lapointe J; Söll D
    J Biol Chem; 1972 Aug; 247(16):4966-74. PubMed ID: 4341531
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation and crystallization of valyl-tRNA synthetase from E. coli MRE 600.
    Paradies HH
    J Biochem; 1974 Sep; 76(3):655-9. PubMed ID: 4612032
    [No Abstract]   [Full Text] [Related]  

  • 17. The 32PPi--ATP isotope-exchange reaction catalyzed by the yeast valyl-tRNA synthetase: order of substrate binding and effect of tRNA.
    Kern D; Giegé R
    FEBS Lett; 1979 Jul; 103(2):274-81. PubMed ID: 223884
    [No Abstract]   [Full Text] [Related]  

  • 18. Beta- and gamma-thio analogues of adenosine triphosphate as probes of the Escherichia coli valyl transfer ribonucleic acid synthetase reaction pathway. A novel stereospecific interchange of adenosine 5'-O-(2-thiotriphosphate) to adenosine 5'-O-(3-thiotriphosphate).
    Rossomando EF; Smith LT; Cohn M
    Biochemistry; 1979 Dec; 18(25):5670-4. PubMed ID: 391274
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli.
    Smith LT; Cohn M
    Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of transfer ribonucleic acid on the rate law and mechanism of the adenosine triphosphate--pyrophosphate isotope exchange reaction of an aminoacyl transfer ribonucleic acid synthetase.
    McNeil MR; Schimmel PR
    Arch Biochem Biophys; 1972 Sep; 152(1):175-9. PubMed ID: 4342105
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.