BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4941862)

  • 1. Purification of an Escherichia coli leucine suppressor transfer ribonucleic acid and its aminoacylation by the homologous leucyl-transfer ribonucleic acid synthetase.
    Hayashi H; Söll D
    J Biol Chem; 1971 Aug; 246(16):4951-4. PubMed ID: 4941862
    [No Abstract]   [Full Text] [Related]  

  • 2. Purification of five leucine transfer ribonucleic acid species from Escherichia coli and their acylation by heterologous leucyl-transfer ribonucleic acid synthetase.
    Blank HU; Söll D
    J Biol Chem; 1971 Aug; 246(16):4947-50. PubMed ID: 4936719
    [No Abstract]   [Full Text] [Related]  

  • 3. A general method for the separation of isoaccepting transfer ribonucleic acids: purification of five leucine transfer ribonucleic acids from Escherichia coli.
    Holladay DW; Pearson RL; Kelmers AD
    Biochim Biophys Acta; 1971 Jul; 240(4):541-53. PubMed ID: 4941741
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on polynucleotides. LXXXV. Partial purification of an amber supressor tRNA and studies on in vitro suppression.
    Söll D
    J Mol Biol; 1968 May; 34(1):175-87. PubMed ID: 4938541
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism of polypeptide chain termination. Translation of tandem amber termination codons by an amber suppressor transfer ribonucleic acid.
    Ghosh HP; Ghosh K; Ganoza MC
    J Biol Chem; 1972 Sep; 247(17):5322-6. PubMed ID: 4560195
    [No Abstract]   [Full Text] [Related]  

  • 6. A comparative study of the interactions of Escherichia coli leucyl-, seryl-, and valyl-transfer ribonucleic acid synthetases with their cognate transfer ribonucleic acids.
    Myers G; Blank HU; Söll D
    J Biol Chem; 1971 Aug; 246(16):4955-64. PubMed ID: 4936720
    [No Abstract]   [Full Text] [Related]  

  • 7. Purification of two valine transfer ribonucleic acid species from Escherichia coli and their coding properties.
    Bhaduri S; Bose KK; Chatterjee NK; Gupta NK
    J Biol Chem; 1971 May; 246(9):3030-6. PubMed ID: 4928896
    [No Abstract]   [Full Text] [Related]  

  • 8. Aminoacylation and polypeptide synthesis with tRNA lacking ribothymidine.
    Svensson I; Isaksson L; Henningsson A
    Biochim Biophys Acta; 1971 May; 238(2):331-7. PubMed ID: 4936435
    [No Abstract]   [Full Text] [Related]  

  • 9. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases.
    Roy KL; Söll D
    J Biol Chem; 1970 Mar; 245(6):1394-400. PubMed ID: 4910052
    [No Abstract]   [Full Text] [Related]  

  • 10. Kethoxal inactivation of three transfer ribonucleic acids chargeable by yeast phenylalanyl transfer ribonucleic acid synthetase.
    Litt M; Greenspan CM
    Biochemistry; 1972 Apr; 11(8):1437-42. PubMed ID: 4553754
    [No Abstract]   [Full Text] [Related]  

  • 11. Viral modification of the valyl transfer ribonucleic acid synthetase of Escherichia coli.
    Marchin GL; Comer MM; Neidhardt FC
    J Biol Chem; 1972 Aug; 247(16):5132-45. PubMed ID: 4560499
    [No Abstract]   [Full Text] [Related]  

  • 12. Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine.
    Eldred EW; Schimmel PR
    J Biol Chem; 1972 May; 247(9):2961-4. PubMed ID: 4554364
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence for one leucyl transfer ribonucleic acid synthetase with specificity for leucine transfer ribonucleic acids with different coding characteristics.
    Bennett TP
    J Biol Chem; 1969 Jun; 244(12):3182-7. PubMed ID: 4893339
    [No Abstract]   [Full Text] [Related]  

  • 14. Genetically and chemically derived missense suppressor transfer RNA's with altered enzymic aminoacylation rates.
    Carbon J; Curry JB
    J Mol Biol; 1968 Dec; 38(2):201-16. PubMed ID: 4330697
    [No Abstract]   [Full Text] [Related]  

  • 15. Specificity of aminoacyl transfer ribonucleic acid synthetases from Escherichia coli K12.
    Kondo M; Woese CR
    Biochemistry; 1969 Oct; 8(10):4177-82. PubMed ID: 4899584
    [No Abstract]   [Full Text] [Related]  

  • 16. Purification of chicken liver seryl transfer ribonucleic acid by complex formation with elongation factor EF-Tu:GTP. A general micromethod of aminoacyl transfer ribonucleic acid purification.
    Klyde BJ; Bernfield MR
    Biochemistry; 1973 Sep; 12(19):3752-7. PubMed ID: 4596148
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of polyphenylalanine formation by tRNA prepared from Escherichia coli cells starved for amino acids.
    Milbauer-Kaplan R
    Biochim Biophys Acta; 1971 Sep; 247(1):122-32. PubMed ID: 4946278
    [No Abstract]   [Full Text] [Related]  

  • 18. Transfer RNA and aminoacyl-tRNA synthetases in cells of E. coli infected with phage MS2.
    Berzin VM; Gren EY
    Mol Biol; 1972; 6(6):674-8. PubMed ID: 4582405
    [No Abstract]   [Full Text] [Related]  

  • 19. An assessment of polynucleotide inhibition studies of aminoacyl-transfer ribonucleic acid synthetases.
    Holten VZ; Jacobson KB
    Biochemistry; 1967 May; 6(5):1293-7. PubMed ID: 4962495
    [No Abstract]   [Full Text] [Related]  

  • 20. Amino acylaminonucleoside inhibitors of protein synthesis. II. Effect on oligophenylalanine formation.
    Coutsogeorgopoulos C
    Biochim Biophys Acta; 1971 Jun; 240(1):137-50. PubMed ID: 4940153
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.