These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 494237)
1. The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport. Cioffi M Tissue Cell; 1979; 11(3):467-79. PubMed ID: 494237 [TBL] [Abstract][Full Text] [Related]
2. X-ray microanalysis of elements in frozen-hydrated sections of an electrogenic K+ transport system: the posterior midgut of tobacco hornworm (Manduca sexta) in vivo and in vitro. Dow JA; Gupta BL; Hall TA; Harvey WR J Membr Biol; 1984; 77(3):223-41. PubMed ID: 6699905 [TBL] [Abstract][Full Text] [Related]
3. Proline transport into brush border membrane vesicles from the midgut of Manduca sexta larvae. Reuveni M; Dunn PE Comp Biochem Physiol Comp Physiol; 1994 Apr; 107(4):685-91. PubMed ID: 7911413 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the localization of Bacillus thuringiensis Cry1A delta-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta. Chen J; Brown MR; Hua G; Adang MJ Cell Tissue Res; 2005 Jul; 321(1):123-9. PubMed ID: 15902495 [TBL] [Abstract][Full Text] [Related]
5. Active transport by the cecropia midgut. II. Fine structure of the midgut epithelium. Anderson E; Harvey WR J Cell Biol; 1966 Oct; 31(1):107-34. PubMed ID: 6008373 [TBL] [Abstract][Full Text] [Related]
6. Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure. Cioffi M; Wolfersberger MG Tissue Cell; 1983; 15(5):781-803. PubMed ID: 6648956 [TBL] [Abstract][Full Text] [Related]
7. Morphological regional differences of epithelial cells along the midgut in Diatraea saccharalis Fabricius (Lepidoptera: Crambidae) larvae. Pinheiro DO; Quagio-Grassiotto I; Gregório EA Neotrop Entomol; 2008; 37(4):413-9. PubMed ID: 18813743 [TBL] [Abstract][Full Text] [Related]
8. Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Hopkins TL; Harper MS Arch Insect Biochem Physiol; 2001 Jun; 47(2):100-9. PubMed ID: 11376456 [TBL] [Abstract][Full Text] [Related]
9. Active chloride transport in isolated posterior midgut of tobacco hornworm (Manduca sexta). Chao AC; Koch AR; Moffett DF Am J Physiol; 1989 Oct; 257(4 Pt 2):R752-61. PubMed ID: 2801996 [TBL] [Abstract][Full Text] [Related]
10. The larval midgut of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells. Levy SM; Falleiros AM; Gregório EA; Arrebola NR; Toledo LA Braz J Biol; 2004 Aug; 64(3B):633-8. PubMed ID: 15620001 [TBL] [Abstract][Full Text] [Related]
11. Origin of the short circuit decay profile and maintenance of the cation transport capacity of the larval lepidopteran midgut in vitro and in vivo. Schultz TW; Jungreis AM Tissue Cell; 1977; 9(2):255-72. PubMed ID: 906016 [No Abstract] [Full Text] [Related]
12. Role of midgut electrogenic K+ pump potential difference in regulating lumen K+ and pH in larval lepidoptera. Dow JA; Harvey WR J Exp Biol; 1988 Nov; 140():455-63. PubMed ID: 2849625 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of an apically sorted 41-kDa protein from the midgut of tobacco hornworm (Manduca sexta). Borhegyi NH; Molnár K; Csikós G; Sass M Cell Tissue Res; 1999 Sep; 297(3):513-25. PubMed ID: 10460498 [TBL] [Abstract][Full Text] [Related]
14. Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study. Spies AG; Spence KD Tissue Cell; 1985; 17(3):379-94. PubMed ID: 4012768 [TBL] [Abstract][Full Text] [Related]
15. Anatomy and fine structure of the alimentary canal of the spittlebug Lepyronia coleopterata (L.) (Hemiptera: Cercopoidea). Zhong H; Zhang Y; Wei C Arthropod Struct Dev; 2013 Nov; 42(6):521-530. PubMed ID: 23707348 [TBL] [Abstract][Full Text] [Related]
16. Barium modifies the concentration dependence of active potassium transport by insect midgut. Moffett DF; Koch AR J Membr Biol; 1985; 86(2):89-97. PubMed ID: 4032462 [TBL] [Abstract][Full Text] [Related]
17. Driving forces and pathways for H+ and K+ transport in insect midgut goblet cells. Moffett DF; Koch A J Exp Biol; 1992 Nov; 172():403-15. PubMed ID: 1337097 [TBL] [Abstract][Full Text] [Related]
19. The role of stem cells in midgut growth and regeneration. Hakim RS; Baldwin KM; Loeb M In Vitro Cell Dev Biol Anim; 2001 Jun; 37(6):338-42. PubMed ID: 11515964 [TBL] [Abstract][Full Text] [Related]
20. A potential dual apical pathway in polarized regenerative cells of the midgut of Manduca sexta. Borhegyi NH; Molnár K; Csikós GY; Sass M Acta Biol Hung; 2001; 52(4):443-56. PubMed ID: 11693994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]