These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 494276)

  • 1. Effect of substituents on in vitro metabolism and covalent binding of substituted bromobenzenes.
    Wiley RA; Hanzlik RP; Gillesse T
    Toxicol Appl Pharmacol; 1979 Jun; 49(2):249-55. PubMed ID: 494276
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic activation and hepatotoxicity. Metabolism of bromobenzene in isolated hypatocytes.
    Thor H; Moldéus P; Kristoferson A; Högberg J; Reed DJ; Orrenius S
    Arch Biochem Biophys; 1978 May; 188(1):114-21. PubMed ID: 28083
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of irreversible protein-binding metabolites during microsomal metabolism of 14C-bromobenzene and 14C-bromophenol.
    Hesse S; Wolff T; Mezger M
    Adv Exp Med Biol; 1981; 136 Pt A():387-93. PubMed ID: 7344470
    [No Abstract]   [Full Text] [Related]  

  • 4. In vitro metabolism and covalent binding among ortho-substituted bromobenzenes of varying hepatotoxicity.
    Weller PE; Narasimhan N; Buben JA; Hanzlik RP
    Drug Metab Dispos; 1988; 16(2):232-7. PubMed ID: 2898339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dithiocarb and dimethyl sulfoxide on irreversible binding of 14C-bromobenzene to rat liver microsomal protein.
    Younes M; Siegers CP; Filser JG
    Arch Toxicol; 1979 Sep; 42(4):289-93. PubMed ID: 229786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and covalent binding of substituted bromobenzenes to isolated hepatocytes.
    Hanzlik RP; Gillesse TJ; Wiley RA
    Adv Exp Med Biol; 1981; 136 Pt A():381-6. PubMed ID: 7344469
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemistry of covalent binding: studies with bromobenzene and thiobenzamide.
    Hanzlik RP
    Adv Exp Med Biol; 1986; 197():31-40. PubMed ID: 3766265
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolic activation and hepatotoxicity. Effect of cysteine, N-acetylcysteine, and methionine on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatocytes.
    Thor H; Moldéus P; Orrenius S
    Arch Biochem Biophys; 1979 Feb; 192(2):405-13. PubMed ID: 434834
    [No Abstract]   [Full Text] [Related]  

  • 9. Development of a novel method for measuring covalent binding and its application to investigations of bromobenzene hepatotoxicity.
    Dent JG; Sun JD
    Adv Exp Med Biol; 1981; 136 Pt A():275-85. PubMed ID: 7344461
    [No Abstract]   [Full Text] [Related]  

  • 10. Microsomal metabolism and covalent binding of [3H/14C]-bromobenzene. Evidence for quinones as reactive metabolites.
    Narasimhan N; Weller PE; Buben JA; Wiley RA; Hanzlik RP
    Xenobiotica; 1988 May; 18(5):491-9. PubMed ID: 3400271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chemical and enzymic probes on microsomal covalent binding of bromobenzene and derivatives. Evidence for quinones as reactive metabolites.
    Buben JA; Narasimhan N; Hanzlik RP
    Xenobiotica; 1988 May; 18(5):501-10. PubMed ID: 3400272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substituents on arene oxide-mediated liver toxicity among substituted bromobenzenes.
    Toranzo EG; Gillesse T; Mendenhall M; Traiger GJ; Riley PG; Hanzlik RP; Wiley RA
    Toxicol Appl Pharmacol; 1977 Jun; 40(3):415-25. PubMed ID: 882979
    [No Abstract]   [Full Text] [Related]  

  • 13. The covalent binding of bromobenzene with nucleic acids.
    Colacci A; Arfellini G; Mazzullo M; Prodi G; Grilli S
    Toxicol Pathol; 1985; 13(4):276-82. PubMed ID: 2422722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bromobenzene metabolism in the rabbit: specific forms of cytochrome P-450 involved in 2,3- and 3,4-epoxidation.
    Lau SS; Zannoni VG
    Mol Pharmacol; 1981 Jul; 20(1):234-5. PubMed ID: 7290087
    [No Abstract]   [Full Text] [Related]  

  • 15. Unrecognized causative factors for the lack of in vitro metabolism reported by McKinney et al.
    Hardy ML
    Environ Toxicol Chem; 2012 Jun; 31(6):1184-5; author reply 1185-6. PubMed ID: 22605621
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification of a rat liver microsomal esterase as a target protein for bromobenzene metabolites.
    Rombach EM; Hanzlik RP
    Chem Res Toxicol; 1998 Mar; 11(3):178-84. PubMed ID: 9544615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple reactive metabolites derived from bromobenzene.
    Lau SS; Monks TJ; Gillette JR
    Drug Metab Dispos; 1984; 12(3):291-6. PubMed ID: 6145555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of bromobenzene to reactive metabolites by isolated hepatocytes.
    Thor H; Svensson SA; Hartzell P; Orrenius S
    Adv Exp Med Biol; 1981; 136 Pt A():287-99. PubMed ID: 7344462
    [No Abstract]   [Full Text] [Related]  

  • 19. Hepatic bromobenzene epoxidation and binding: prevention by ascorbyl palmitate.
    Zannoni VG; Marker EK; Lau SS
    Drug Nutr Interact; 1982; 1(3):193-204. PubMed ID: 6926828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bromobenzene metabolism in vivo and in vitro. The mechanism of 4-bromocatechol formation.
    Miller NE; Thomas D; Billings RE
    Drug Metab Dispos; 1990; 18(3):304-8. PubMed ID: 1974190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.