These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 4942936)

  • 1. Structural requirements for inhibition of yeast imidazoleglycerol phosphate dehydratase by triazole and anion inhibitors.
    Wiater A; Hulanicka D; Klopotowski T
    Acta Biochim Pol; 1971; 18(3):289-97. PubMed ID: 4942936
    [No Abstract]   [Full Text] [Related]  

  • 2. Synergistic inhibition of plant imidazoleglycerol phosphate dehydratase by aminotriazole and phosphate.
    Wiater A; Klopotowski T; Bagdasarian G
    Acta Biochim Pol; 1971; 18(3):309-14. PubMed ID: 4942937
    [No Abstract]   [Full Text] [Related]  

  • 3. Synergism of aminotriazole and phosphate on the inhibition of yeast imidazole glycerol phosphate dehydratase.
    Klopotowski T; Wiater A
    Arch Biochem Biophys; 1965 Dec; 112(3):562-6. PubMed ID: 5880156
    [No Abstract]   [Full Text] [Related]  

  • 4. Some properties of the catalytic sites of imidazoleglycerol phosphate dehydratase-histidinol phosphate phosphatase, a bifunctional enzyme from Salmonella typhimurium.
    Brady DR; Houston LL
    J Biol Chem; 1973 Apr; 248(7):2588-92. PubMed ID: 4349042
    [No Abstract]   [Full Text] [Related]  

  • 5. Subunit structure and photooxidation of yeast imidazoleglycerolphosphate dehydratase.
    Glaser RD; Houston LL
    Biochemistry; 1974 Dec; 13(25):5145-52. PubMed ID: 4611478
    [No Abstract]   [Full Text] [Related]  

  • 6. Theoretical evidence of the existence of a diazafulvene intermediate in the reaction pathway of imidazoleglycerol phosphate dehydratase: design of a novel and potent heterocycle structure for the inhibitor on the basis of the electronic structure-activity relationship study.
    Gohda K; Kimura Y; Mori I; Ohta D; Kikuchi T
    Biochim Biophys Acta; 1998 Jun; 1385(1):107-14. PubMed ID: 9630553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a triazole scaffold compound as an inhibitor of Mycobacterium tuberculosis imidazoleglycerol-phosphate dehydratase.
    Kumar D; Jha B; Bhatia I; Ashraf A; Dwivedy A; Biswal BK
    Proteins; 2022 Jan; 90(1):3-17. PubMed ID: 34288118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM.
    Rawson S; Bisson C; Hurdiss DL; Fazal A; McPhillie MJ; Sedelnikova SE; Baker PJ; Rice DW; Muench SP
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1795-1800. PubMed ID: 29434040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and mechanism of imidazoleglycerol-phosphate dehydratase.
    Glynn SE; Baker PJ; Sedelnikova SE; Davies CL; Eadsforth TC; Levy CW; Rodgers HF; Blackburn GM; Hawkes TR; Viner R; Rice DW
    Structure; 2005 Dec; 13(12):1809-17. PubMed ID: 16338409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imidazoleglycerol accumulation by yeast resulting from the inhibition of histidine biosynthesis by 3-amino-1,2,4-triazole.
    KLOPOTOWSKI T; HULANICKA D
    Acta Biochim Pol; 1963; 10():209-18. PubMed ID: 14033605
    [No Abstract]   [Full Text] [Related]  

  • 11. Partial reversal by purine and pyrimidine bases of yeast growth inhibition produced by 3-amino-1,2,4-triazole.
    Klopotowski T; Bagdasarian G
    Acta Biochim Pol; 1966; 13(2):153-63. PubMed ID: 5914480
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of delta-aminolaevulate dehydratase by pyridoxal derivatives and by cyanide.
    Van Heyningen S; Shemin D
    Biochem J; 1971 Oct; 124(5):68P. PubMed ID: 5130998
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of adenosine triphosphate and magnesium ions on the fumarase reaction.
    Penner PE; Cohen LH
    J Biol Chem; 1969 Feb; 244(3):1070-5. PubMed ID: 4976787
    [No Abstract]   [Full Text] [Related]  

  • 14. Discovery of imidazole glycerol phosphate dehydratase inhibitors through 3-D database searching.
    Schweitzer BA; Loida PJ; CaJacob CA; Chott RC; Collantes EM; Hegde SG; Mosier PD; Profeta S
    Bioorg Med Chem Lett; 2002 Jul; 12(13):1743-6. PubMed ID: 12067551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histidine biosynthesis and its regulation in higher plants.
    Wiater A; Krajewska-Grynkiewicz K; Klopotowski T
    Acta Biochim Pol; 1971; 18(3):299-307. PubMed ID: 4331571
    [No Abstract]   [Full Text] [Related]  

  • 16. Structure of catalase-A from Saccharomyces cerevisiae.
    Maté MJ; Zamocky M; Nykyri LM; Herzog C; Alzari PM; Betzel C; Koller F; Fita I
    J Mol Biol; 1999 Feb; 286(1):135-49. PubMed ID: 9931255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aminoesters as inhibitors of plasma membrane H+-ATPase in the yeast Saccharomyces cerevisiae.
    Obłak E; Lachowicz TM; Luczyński J; Witek S
    Cell Mol Biol Lett; 2004; 9(4A):755-63. PubMed ID: 15647796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitors of types I and II dehydroquinase.
    Le Sann C; Gower MA; Abell AD
    Mini Rev Med Chem; 2004 Sep; 4(7):747-56. PubMed ID: 15379642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of new bifunctional inhibitors of type II dehydroquinase.
    Toscano MD; Stewart KA; Coggins JR; Lapthorn AJ; Abell C
    Org Biomol Chem; 2005 Sep; 3(17):3102-4. PubMed ID: 16106291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irreversible inhibition of dihydrodipicolinate synthase by 4-oxo-heptenedioic acid analogues.
    Boughton BA; Griffin MD; O'Donnell PA; Dobson RC; Perugini MA; Gerrard JA; Hutton CA
    Bioorg Med Chem; 2008 Dec; 16(23):9975-83. PubMed ID: 18977662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.