These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4943171)

  • 21. [Purification of a methionine tRNA from rabbit liver].
    Petrissant G; Boisnard M; Puissant C
    Biochim Biophys Acta; 1970 Jul; 213(1):223-5. PubMed ID: 4922963
    [No Abstract]   [Full Text] [Related]  

  • 22. Lack of specificity of isoleucyl-tRNA synthetase: evidence for anomalous charging of tRNA.
    Arcà M; Frontali L; Sapora O; Tecce G
    Biochim Biophys Acta; 1967 Sep; 145(2):284-91. PubMed ID: 6064629
    [No Abstract]   [Full Text] [Related]  

  • 23. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Kula MR
    Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aminoacyl transfer RNA formation. II. Comparison of the mechanisms of aminoacylations stimulated by polyamines and Mg 2+ .
    Igarashi K; Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1972 Apr; 262(4):476-87. PubMed ID: 4336270
    [No Abstract]   [Full Text] [Related]  

  • 25. Transfer RNA and aminoacyl-tRNA synthetases in cells of E. coli infected with phage MS2.
    Berzin VM; Gren EY
    Mol Biol; 1972; 6(6):674-8. PubMed ID: 4582405
    [No Abstract]   [Full Text] [Related]  

  • 26. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase.
    Hughes J; Mellows G
    Biochem J; 1980 Oct; 191(1):209-19. PubMed ID: 6258580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species.
    Anderson JW; Fowden L
    Biochem J; 1970 Oct; 119(4):691-7. PubMed ID: 5493505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Presence of one polypeptide chain in valyl and isoleucyl tRNA synthetases from Escherichia coli.
    Berthelot F; Yaniv M
    Eur J Biochem; 1970 Sep; 16(1):123-5. PubMed ID: 4917227
    [No Abstract]   [Full Text] [Related]  

  • 29. The effects of spermine and Mg2+ on the catalytic mechanism of isoleucine: tRNA ligase.
    Carr AC; Igloi GL; Penzer GR; Plumbridge JA
    Eur J Biochem; 1975 May; 54(1):169-73. PubMed ID: 238842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased isoleucine acceptance by sulfur-deficient transfer RNA from Escherichia coli.
    Harris CL; Marashi F; Titchener EB
    Nucleic Acids Res; 1976 Aug; 3(8):2129-42. PubMed ID: 787931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on valyl-tRNA synthetase and tRNA from Escherichia coli. I. Purification and properties of the enzyme from normal Escherichia coli strains.
    Yaniv M; Gros F
    J Mol Biol; 1969 Aug; 44(1):1-15. PubMed ID: 4897802
    [No Abstract]   [Full Text] [Related]  

  • 33. Structure and function of E. coli formylmethionyl tRNA. I. Effect of modification of pyrimidine residues on aminoacyl synthetase recognition.
    Schulman LH
    Proc Natl Acad Sci U S A; 1970 Jun; 66(2):507-14. PubMed ID: 4917443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of isoleucyl-transfer ribonucleic acid synthetase in ribonucleic acid synthesis and enzyme repression in yeast.
    McLaughlin CS; Magee PT; Hartwell LH
    J Bacteriol; 1969 Nov; 100(2):579-84. PubMed ID: 5354934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients.
    Holmes WM; Hurd RE; Reid BR; Rimerman RA; Hatfield GW
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):1068-71. PubMed ID: 1093164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatographic fractionation of Escherichia coli transfer RNA on a new support, naphthoyl-Sepharose.
    Hjertén S; Hellman U; Svensson I; Rosengren J
    J Biochem Biophys Methods; 1979 Oct; 1(5):263-73. PubMed ID: 399613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved method for the purification of tRNA by chromatography on dihydroxyboryl substituted cellulose.
    McCutchan TF; Gilham PT; Söll D
    Nucleic Acids Res; 1975 Jun; 2(6):853-64. PubMed ID: 1096084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of spermine-Sepharose column chromatography to the separation of plant-specific transfer ribonucleic acids and aminoacyl-tRNA synthetases.
    Joachimiak A; Barciszewska M; Barciszewski J; Wiewiórowski M
    J Chromatogr; 1979 Nov; 180(1):157-62. PubMed ID: 541449
    [No Abstract]   [Full Text] [Related]  

  • 39. Mutants of yeast with temperature-sensitive isoleucyl-tRNA synthetases.
    Hartwell LH; McLaughlin CS
    Proc Natl Acad Sci U S A; 1968 Feb; 59(2):422-8. PubMed ID: 5238975
    [No Abstract]   [Full Text] [Related]  

  • 40. Purification and some properties of Escherichia coli tRNA nucleotidyltransferase.
    Schofield P; Williams KR
    J Biol Chem; 1977 Aug; 252(15):5584-8. PubMed ID: 328503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.