These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 4943721)

  • 1. Inhibition of the alanine tRNA aminoacylation by Ca 2+ .
    Roy AK
    Biochim Biophys Acta; 1971 Aug; 246(2):349-52. PubMed ID: 4943721
    [No Abstract]   [Full Text] [Related]  

  • 2. Aminoacylation of tRNA. Magnesium requirement and spermidine effect.
    Thiebe R
    FEBS Lett; 1975 Mar; 51(1):259-61. PubMed ID: 1091512
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition by calcium of tRNA aminoacylation in preparations from rat liver.
    Rao KN; de Smet M; Howells AJ; Bygrave FL
    FEBS Lett; 1974 May; 41(2):185-8. PubMed ID: 4852464
    [No Abstract]   [Full Text] [Related]  

  • 4. Tyrosyl-tRNA synthetase of Escherichia coli B. Role of magnesium ions in the reaction catalyzed by the enzyme.
    Chousterman S; Chapeville F
    Eur J Biochem; 1973 May; 35(1):46-50. PubMed ID: 4576575
    [No Abstract]   [Full Text] [Related]  

  • 5. Hydroxylamine-dependent reactions catalyzed by a lysyl-tRNA synthetase of Escherichia coli B.
    Hele P
    Biochim Biophys Acta; 1973 Jan; 294(2):273-83. PubMed ID: 4348067
    [No Abstract]   [Full Text] [Related]  

  • 6. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxylamine-dependent reactions catalyzed by a lysyl-tRNA synthetase of Escherichia coli B.
    Hele P
    Biochim Biophys Acta; 1973 Jan; 294(1):273-83. PubMed ID: 4575962
    [No Abstract]   [Full Text] [Related]  

  • 8. Determination of some L-amino acids in biological samples by aminoacylation of tRNA.
    Parrilla R; Ayuso-Parrilla MS; Goodman MN
    Anal Biochem; 1973 Aug; 54(2):362-9. PubMed ID: 4579619
    [No Abstract]   [Full Text] [Related]  

  • 9. ppGpp formation in Escherichia coli treated with rifampicin.
    Erlich H; Laffler T; Gallant J
    J Biol Chem; 1971 Oct; 246(19):6121-3. PubMed ID: 4940406
    [No Abstract]   [Full Text] [Related]  

  • 10. Interactions of phenylalanyl transfer ribonucleic acid synthetase of Neurospora crassa with valyl transfer ribonucleic acid of Escherichia coli.
    Ritter PO; Jacobson KB
    J Biol Chem; 1972 Dec; 247(23):7603-8. PubMed ID: 4264131
    [No Abstract]   [Full Text] [Related]  

  • 11. Inhibition of leucyl-tRNA synthetase in Escherichia coli by the cytostatic 5,8-dioxo-6-amino-7-chloroquinoline.
    Ogilvie A; Wiebauer K; Spitzbarth P; Kersten W
    Biochim Biophys Acta; 1975 Oct; 407(3):357-64. PubMed ID: 95889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies of the prolyl transfer ribonucleic acid synthetase of Escherichia coli. Order of addition of substrates and release of products.
    Papas TS; Mehler AH
    J Biol Chem; 1971 Oct; 246(19):5924-8. PubMed ID: 4330060
    [No Abstract]   [Full Text] [Related]  

  • 13. Aminoacyl transfer RNA formation. II. Comparison of the mechanisms of aminoacylations stimulated by polyamines and Mg 2+ .
    Igarashi K; Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1972 Apr; 262(4):476-87. PubMed ID: 4336270
    [No Abstract]   [Full Text] [Related]  

  • 14. Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine.
    Young PA; Kaiser II
    Arch Biochem Biophys; 1975 Dec; 171(2):483-9. PubMed ID: 963
    [No Abstract]   [Full Text] [Related]  

  • 15. Thiosine-resistant mutants of Escherichia coli K-12 with growth-medium-dependent lysl-tRNA synthetase activity. I. Isolation and physiological characterization.
    Hirshfield IN; Zamecnik PC
    Biochim Biophys Acta; 1972 Feb; 259(3):330-43. PubMed ID: 4552089
    [No Abstract]   [Full Text] [Related]  

  • 16. [Competitive inhibition of Phe: tRNA ligase of sheep embryos by aurintricarboxylic acid].
    Carias JR; Julien R
    FEBS Lett; 1975 Aug; 56(2):303-6. PubMed ID: 1157948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effect of AMP on the activation reactions of the amino acids involved in gramicidin S biosynthesis.
    Kristensen T; Gilhuus-Moe CC; Zimmer TL; Laland SG
    Eur J Biochem; 1973 May; 34(3):548-50. PubMed ID: 4351849
    [No Abstract]   [Full Text] [Related]  

  • 18. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-participation of aminoacyl adenylates in the spermine catalyzed aminoacylation of transfer-RNA.
    Pastuszyn A; Loftfield RB
    Biochem Biophys Res Commun; 1972 May; 47(4):775-83. PubMed ID: 4337323
    [No Abstract]   [Full Text] [Related]  

  • 20. Investigations on the antiproliferative effects of amino acid antagonists targeting for aminoacyl-tRNA synthetases. Part I--The antibacterial effect.
    Laske R; Schönenberger H; Holler E
    Arch Pharm (Weinheim); 1989 Dec; 322(12):847-52. PubMed ID: 2695008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.