These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 4943851)

  • 1. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation.
    Yunis JJ; Yasmineh WG
    Science; 1971 Dec; 174(4015):1200-9. PubMed ID: 4943851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochromatic regions in Japanese quail chromosomes: comprehensive molecular-cytogenetic characterization and 3D mapping in interphase nucleus.
    Zlotina A; Maslova A; Kosyakova N; Al-Rikabi ABH; Liehr T; Krasikova A
    Chromosome Res; 2019 Sep; 27(3):253-270. PubMed ID: 30565005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergence of repetitive DNA sequences in the heterochromatin of medaka fishes: Molecular cytogenetic characterization of constitutive heterochromatin in two medaka species: Oryzias hubbsi and O. celebensis (Adrianichthyidae, Beloniformes).
    Uno Y; Asada Y; Nishida C; Takehana Y; Sakaizumi M; Matsuda Y
    Cytogenet Genome Res; 2013; 141(2-3):212-26. PubMed ID: 24028862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of Major Satellite DNAs in Snake Heterochromatin.
    Lisachov A; Rumyantsev A; Prokopov D; Ferguson-Smith M; Trifonov V
    Animals (Basel); 2023 Jan; 13(3):. PubMed ID: 36766223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telomeric satellite DNA functions in regulating recombination.
    Miklos GL; Nankivell RN
    Chromosoma; 1976 Jun; 56(2):143-67. PubMed ID: 976019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative variation of "Mus musculus-like" constitutive heterochromatin and satellite DNA-sequences in the genus Mus.
    Sen S; Sharma T
    Chromosoma; 1980; 81(3):393-402. PubMed ID: 7449568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal constitution of nucleolus-associated chromatin in man.
    Stahl A; Hartung M; Vagner-Capodano AM; Fouet C
    Hum Genet; 1976 Dec; 35(1):27-34. PubMed ID: 1002162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cytogenetics of the equidae. II. purification and cytological localization of a (G + C)-rich satellite DNA from Equus hemionus onager and cross-species hybridization to E. asinus chromosomes.
    Gadi IK; Ryder OA
    Cytogenet Cell Genet; 1983; 35(2):124-30. PubMed ID: 6851669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Basic Cytogenetics Challenges Holocentricity of Butterfly Chromosomes.
    Dutrillaux B; Dutrillaux AM; McClure M; Gèze M; Elias M; Bed'hom B
    Cytogenet Genome Res; 2022; 162(5):262-272. PubMed ID: 36689925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective.
    Macgregor HC; Sessions SK
    Philos Trans R Soc Lond B Biol Sci; 1986 Jan; 312(1154):243-59. PubMed ID: 2870520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man.
    Yurov YB; Mitkevich SP; Alexandrov IA
    Hum Genet; 1987 Jun; 76(2):157-64. PubMed ID: 3475246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytogenetics of four Omophoita species (Coleoptera, Chrysomelidae, Alticinae): a comparative analysis using mitotic and meiotic cells submitted to the standard staining and C-banding technique.
    Almeida MC; Campaner C; Cella DM
    Micron; 2009; 40(5-6):586-96. PubMed ID: 19394234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intragenomic movement, sequence amplification and concerted evolution in satellite DNA in harvest mice, Reithrodontomys: evidence from in situ hybridization.
    Hamilton MJ; Honeycutt RL; Baker RJ
    Chromosoma; 1990 Sep; 99(5):321-9. PubMed ID: 2265569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hypermethylated Regions in Avian Chromosomes.
    Schmid M; Steinlein C
    Cytogenet Genome Res; 2017; 151(4):216-227. PubMed ID: 28315870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus.
    Carvalho C; Pereira HM; Ferreira J; Pina C; Mendonça D; Rosa AC; Carmo-Fonseca M
    Mol Biol Cell; 2001 Nov; 12(11):3563-72. PubMed ID: 11694589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Great Abundance of Satellite DNA in Proceratophrys (Anura, Odontophrynidae) Revealed by Genome Sequencing.
    da Silva MJ; Fogarin Destro R; Gazoni T; Narimatsu H; Pereira Dos Santos PS; Haddad CFB; Parise-Maltempi PP
    Cytogenet Genome Res; 2020; 160(3):141-147. PubMed ID: 32146462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A centromeric satellite DNA in the European plethodontid salamanders (Amphibia, Urodela).
    Batistoni R; Nardi I; Rebecchi L; Nardone M; Demartis A
    Genome; 1991 Dec; 34(6):1007-12. PubMed ID: 1778466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular cytogenetic research on the polymorphism of segments of the constitutive heterochromatin in human chromosomes].
    Iurov IuB; Mitkevich SP; Aleksandrov IA
    Genetika; 1988 Feb; 24(2):356-65. PubMed ID: 3360319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence of centromere separation: role of centromeric heterochromatin.
    Vig BK
    Genetics; 1982 Dec; 102(4):795-806. PubMed ID: 6764903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome evolution in pocket gophers (genus Thomomys). I. Heterochromatin variation and speciation potential.
    Patton JL; Sherwood SW
    Chromosoma; 1982; 85(2):149-62. PubMed ID: 7117026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.