BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4943932)

  • 1. The mouse intestinal microflora with emphasis on the strict anaerobes.
    Lee A; Gordon J; Lee CJ; Dubos R
    J Exp Med; 1971 Feb; 133(2):339-52. PubMed ID: 4943932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dietary short-chain fructooligosaccharides on the intestinal microflora of horses subjected to a sudden change in diet.
    Respondek F; Goachet AG; Julliand V
    J Anim Sci; 2008 Feb; 86(2):316-23. PubMed ID: 17940163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASSOCIATION OF GERMFREE MICE WITH BACTERIA ISOLATED FROM NORMAL MICE.
    SCHAEDLER RW; DUBS R; COSTELLO R
    J Exp Med; 1965 Jul; 122(1):77-82. PubMed ID: 14325475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE DEVELOPMENT OF THE BACTERIAL FLORA IN THE GASTROINTESTINAL TRACT OF MICE.
    SCHAEDLER RW; DUBOS R; COSTELLO R
    J Exp Med; 1965 Jul; 122(1):59-66. PubMed ID: 14325473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria isolated from the duodenum, ileum, and cecum of young chicks.
    Salanitro JP; Blake IG; Muirehead PA; Maglio M; Goodman JR
    Appl Environ Microbiol; 1978 Apr; 35(4):782-90. PubMed ID: 646359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the normal gastrointestinal microflora of specific pathogen-free chickens.
    Coloe PJ; Bagust TJ; Ireland L
    J Hyg (Lond); 1984 Feb; 92(1):79-87. PubMed ID: 6229572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil.
    Nakayama H; Kinouchi T; Kataoka K; Akimoto S; Matsuda Y; Ohnishi Y
    Pharmacogenetics; 1997 Feb; 7(1):35-43. PubMed ID: 9110360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gastrointestinal epithelium and its autochthonous bacterial flora.
    Savage DC; Dubos R; Schaedler RW
    J Exp Med; 1968 Jan; 127(1):67-76. PubMed ID: 4169441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of various intestinal bacteria in converting germfree mice to the normal state.
    Freter R; Abrams GD
    Infect Immun; 1972 Aug; 6(2):119-26. PubMed ID: 4631910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal microflora: elimination of germfree characteristics by components of the normal microbial flora.
    Pesti L
    Comp Immunol Microbiol Infect Dis; 1979; 1(3):141-52. PubMed ID: 117972
    [No Abstract]   [Full Text] [Related]  

  • 11. Small intestinal mucosal cell proliferation and bacterial flora in the conventionalization of the germfree mouse.
    Khoury KA; Floch MH; Hersh T
    J Exp Med; 1969 Sep; 130(3):659-70. PubMed ID: 4896909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiotics conspicuously affect community profiles and richness, but not the density of bacterial cells associated with mucosa in the large and small intestines of mice.
    Puhl NJ; Uwiera RR; Yanke LJ; Selinger LB; Inglis GD
    Anaerobe; 2012 Feb; 18(1):67-75. PubMed ID: 22185696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the cultivable microflora of the large intestine of the rat under varied environmental hyperbaric pressures.
    Maity C; Adak A; Pathak TK; Pati BR; Chandra Mondal K
    J Microbiol Immunol Infect; 2012 Aug; 45(4):281-6. PubMed ID: 22305555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia.
    Adak A; Maity C; Ghosh K; Mondal KC
    Z Gastroenterol; 2014 Feb; 52(2):180-6. PubMed ID: 24526402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial colonization of the intestinal epithelium in suckling mice.
    Davis CP; McAllister JS; Savage DC
    Infect Immun; 1973 Apr; 7(4):666-72. PubMed ID: 4586864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora.
    Freter R; Stauffer E; Cleven D; Holdeman LV; Moore WE
    Infect Immun; 1983 Feb; 39(2):666-75. PubMed ID: 6339387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal changes in selected bacterial groups of the pig colonic microflora.
    Swords WE; Wu CC; Champlin FR; Buddington RK
    Biol Neonate; 1993; 63(3):191-200. PubMed ID: 8324100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells.
    Yanagibashi T; Hosono A; Oyama A; Tsuda M; Suzuki A; Hachimura S; Takahashi Y; Momose Y; Itoh K; Hirayama K; Takahashi K; Kaminogawa S
    Immunobiology; 2013 Apr; 218(4):645-51. PubMed ID: 22940255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The normal human anaerobic microflora.
    Evaldson G; Heimdahl A; Kager L; Nord CE
    Scand J Infect Dis Suppl; 1982; 35():9-15. PubMed ID: 6762655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control mechanisms of the large-intestinal microflora and its influence on the host.
    Freter R
    Acta Gastroenterol Latinoam; 1989; 19(4):197-217. PubMed ID: 2701204
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.