BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 4944456)

  • 1. Inadequacy of myelin phospholipids for restoration of succinoxidase activity in lipid-depleted mitochondria.
    Cabo-Soler J; Sechi AM; Parenti-Castelli G; Lenaz G
    J Bioenerg; 1971 May; 2(2):129-34. PubMed ID: 4944456
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the morphogenesis of yeast mitochondria. II. Composition of Saccharomyces cerevisiae phospholipids during morphogenesis and their effect on restoration of succinoxidase activity of lipid mitochondria.
    Castelli A; Bertoli E; Buongiorno MS; Curatola G; Lenaz G
    Ital J Biochem; 1972; 21(1):8-22. PubMed ID: 4558633
    [No Abstract]   [Full Text] [Related]  

  • 3. Specificity of lipids and coenzyme Q in mitochondrial NADH and succin-oxidase of beef heart and S. cerevisiae.
    Lenaz G; Castelli A; Littarru GP; Bertoli E
    Arch Biochem Biophys; 1971 Feb; 142(2):407-16. PubMed ID: 4323724
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of phospholipids from saccharomyces cerevisiae at different stages of development on restoration of succinooxidase activity in lipid-depleted mitochondria.
    Bertoli E; Barbaresi G; Castelli A; Lenaz G
    J Bioenerg; 1971 Aug; 2(3):135-40. PubMed ID: 4944306
    [No Abstract]   [Full Text] [Related]  

  • 5. Succinate dehydrogenase. II. The effect of phospholipases on particulate and soluble succinate dehydrogenase.
    Cerletti P; Caiafa P; Giordano MG; Giovenco MA
    Biochim Biophys Acta; 1969; 191(3):502-8. PubMed ID: 4312203
    [No Abstract]   [Full Text] [Related]  

  • 6. Resolution and reconstitution of the mitochondrial electron transport system. I. Reconstitution of the succinate-ubiquinone reductase.
    Bruni A; Racker E
    J Biol Chem; 1968 Mar; 243(5):962-71. PubMed ID: 5689164
    [No Abstract]   [Full Text] [Related]  

  • 7. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXVI. Specificity of phospholipids required for energy transfer reactions.
    Kagawa Y; Kandrach A; Racker E
    J Biol Chem; 1973 Jan; 248(2):676-84. PubMed ID: 4734332
    [No Abstract]   [Full Text] [Related]  

  • 8. The activation of mitochondrial particulate ATPase by liposomes of diacylphospholipids.
    Dabbeni-Sala F; Furland R; Pitotti A; Bruni A
    Biochim Biophys Acta; 1974 Apr; 347(1):77-86. PubMed ID: 4279700
    [No Abstract]   [Full Text] [Related]  

  • 9. The phospholipid annulus of mitochondrial NADH-ubiquinone reductase: a dual phospholipid requirement for enzyme activity.
    Heron C; Corina D; Ragan CI
    FEBS Lett; 1977 Jul; 79(2):399-403. PubMed ID: 891954
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the activation of purified mitochondrial ATPase by phospholipids.
    Swanljung P; Frigeri L; Ohlson K; Ernster L
    Biochim Biophys Acta; 1973 Jun; 305(3):519-33. PubMed ID: 4354789
    [No Abstract]   [Full Text] [Related]  

  • 11. Resolution and reconstitution of the mitochondrial electron transport system. II. Reconstitution of succinoxidase from individual components.
    Yamashita S; Racker E
    J Biol Chem; 1969 Mar; 244(5):1220-7. PubMed ID: 4304188
    [No Abstract]   [Full Text] [Related]  

  • 12. Lipid specificity of beta-hydroxybutyrate dehydrogenase activation.
    Grover AK; Slotboom AJ; de Haas GH; Hammes GG
    J Biol Chem; 1975 Jan; 250(1):31-8. PubMed ID: 1170169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of mevalonic acid into isoprenoid compounds by enzymes from Pinus radiata. Activation of the overall reaction by phospholipids.
    George-Nascimento C; Beytia E; Aedo AR; Cori O
    Arch Biochem Biophys; 1969 Jul; 132(2):470-6. PubMed ID: 4307824
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of phosphatidylserine and phosphatidylcholine in the dicyclohexylcarbodiimide-induced inhibition of mitochondrial ATPase.
    Bruni A; Pitotti A; Contessa AR; Palatini P
    Biochem Biophys Res Commun; 1971 Jul; 44(2):268-74. PubMed ID: 4258477
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of phospholipids in succinate dehydrogenase.
    Cerletti P; Giordano MG; Giovenco MA; Barra D; Strom R
    Biochim Biophys Acta; 1966 Aug; 122(2):352-5. PubMed ID: 5969304
    [No Abstract]   [Full Text] [Related]  

  • 16. Lipid-protein interactions in mitochondria. II. On the nature and biochemical significance of the interaction between phospholipids and lipid-depleted mitochondria.
    Lenaz G; Sechi AM; Masotti L; Parenti-Castelli G
    Arch Biochem Biophys; 1970 Nov; 141(1):89-97. PubMed ID: 5480129
    [No Abstract]   [Full Text] [Related]  

  • 17. Reversal by phospholipids of the oligomycin induced inhibition of membrane associated adenosintriphosphatases.
    Palatini P; Bruni A
    Biochem Biophys Res Commun; 1970 Jul; 40(1):186-91. PubMed ID: 4248003
    [No Abstract]   [Full Text] [Related]  

  • 18. Lipids of subcellular particles from bovine heart muscle. II. Fatty acids of phospholipids.
    Nazir DJ; Alcaraz AP; Nair PP
    Can J Biochem; 1967 Nov; 45(11):1739-46. PubMed ID: 6064661
    [No Abstract]   [Full Text] [Related]  

  • 19. Lipids of ocular tissues. VII. Positional distribution of the fatty acids in the phospholipids of bovine retina rod outer segments.
    Anderson RE; Sperling L
    Arch Biochem Biophys; 1971 Jun; 144(2):673-7. PubMed ID: 5569905
    [No Abstract]   [Full Text] [Related]  

  • 20. The activity of pure phospholipase A2 from Crotalus atrox venom on myelin and on pure phospholipids.
    Coles E; Mcilwain DL; Rapport MM
    Biochim Biophys Acta; 1974 Jan; 337(1):68-78. PubMed ID: 4433546
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.