These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4944635)

  • 1. Irreversible inhibition of biotin transport in yeast by biotinyl-p-nitrophenyl ester.
    Becker JM; Wilchek M; Katchalski E
    Proc Natl Acad Sci U S A; 1971 Oct; 68(10):2604-7. PubMed ID: 4944635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversibility of the affinity labelled-biotin transport system in yeast cells.
    Viswanatha T; Bayer E; Wilchek M
    Biochim Biophys Acta; 1975 Aug; 401(1):152-6. PubMed ID: 1096958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific localization and quantification of biotin transport components in yeast by use of a biotin-conjugated, impermeant, electron-dense label.
    Bayer EA; Skutelsky E; Viswanatha T; Wilchek M
    Mol Cell Biochem; 1978 Feb; 19(1):23-9. PubMed ID: 347252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinactivation of peptide transport in Saccharomyces cerevisiae.
    Becker JM; Dunsmore KP; Steinfeld AS; Naider F
    Biochemistry; 1982 Nov; 21(23):5967-71. PubMed ID: 6758840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of a homologous series of affinity labeling reagents in the study of the biotin transport system in yeast cells.
    Bayer EA; Viswanatha T; Wilchek M
    FEBS Lett; 1975 Dec; 60(2):309-12. PubMed ID: 776678
    [No Abstract]   [Full Text] [Related]  

  • 6. Transport of the biotin dietary derivative biocytin (N-biotinyl-L-lysine) in rat small intestine.
    Said HM; Thuy LP; Sweetman L; Schatzman B
    Gastroenterology; 1993 Jan; 104(1):75-80. PubMed ID: 8419264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of biotin transport in Saccharomyces cerevisiae.
    Rogers TO; Lichstein HC
    J Bacteriol; 1969 Nov; 100(2):565-72. PubMed ID: 5354932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinactivation of the thiamine transport system in Saccharomyces cerevisiae with 4-azido-2-nitrobenzoylthiamine.
    Sempuku K; Nishimura H; Iwashima A
    Biochim Biophys Acta; 1981 Jul; 645(2):226-8. PubMed ID: 7023538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of amino acids by actidione-treated yeast cells. 3. Effect of sodium and potassium ions.
    Kotyk A; Ríhová L; Ponec M
    Folia Microbiol (Praha); 1971; 16(6):451-3. PubMed ID: 4947179
    [No Abstract]   [Full Text] [Related]  

  • 10. Peptide biotinylation with amine-reactive esters: differential side chain reactivity.
    Miller BT; Collins TJ; Rogers ME; Kurosky A
    Peptides; 1997; 18(10):1585-95. PubMed ID: 9437720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport overshoot during biotin uptake by Saccharomyces cerevisiae.
    Becker JM; Lichstein HC
    Biochim Biophys Acta; 1972 Sep; 282(1):409-20. PubMed ID: 4560821
    [No Abstract]   [Full Text] [Related]  

  • 12. Alteration in the amino acid content of yeast during growth under various nutritional conditions.
    Moat AG; Ahmad F; Alexander JK; Barnes IJ
    J Bacteriol; 1969 May; 98(2):573-8. PubMed ID: 5784213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin uptake by cold-shocked cells, spheroplasts, and repressed cells of Saccharomyces cerevisiae: lack of feedback control.
    Cicmanec JF; Lichstein HC
    J Bacteriol; 1974 Sep; 119(3):718-25. PubMed ID: 4604165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium azide affects methylene blue concentration in Salmonella typhimurium and Saccharomyces cerevisiae.
    Koch WH; Bass GE
    Photochem Photobiol; 1984 Jun; 39(6):841-5. PubMed ID: 6379696
    [No Abstract]   [Full Text] [Related]  

  • 15. Possible site-specific reagent for the general amino acid transport system of Saccharomyces cerevisiae.
    Larimore FS; Roon RJ
    Biochemistry; 1978 Feb; 17(3):431-6. PubMed ID: 339948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme labeling in steroid enzyme immunoassays. Comparison of the p-nitrophenyl ester and N-succinimidyl ester methods.
    Hosoda H; Fukuda K; Gotoh Y
    Chem Pharm Bull (Tokyo); 1991 Sep; 39(9):2373-7. PubMed ID: 1804551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the biotin transport system in Saccharomyces cerevisiae.
    Rogers TO; Lichstein HC
    J Bacteriol; 1969 Nov; 100(2):557-64. PubMed ID: 5354931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of the thiamine transport system in Saccharomyces cerevisiae with O-bromoacetylthiamine.
    Nishimura H; Sempuku K; Nosaka K; Iwashima A
    Arch Biochem Biophys; 1988 Oct; 266(1):248-53. PubMed ID: 3052299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth characteristics of Saccharomyces cerevisiae and Aspergillus nidulans when biotin is replaced by aspartic and fatty acids.
    Adler JH; Gealt MA; Nes WD; Nes WR
    J Gen Microbiol; 1981 Jan; 122(1):101-7. PubMed ID: 7033444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biotin transport system in yeast.
    Bayer EA; Wilchek M
    Methods Enzymol; 1979; 62():371-8. PubMed ID: 374978
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.