These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 4944802)
1. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C. Segner WP; Schmidt CF Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802 [TBL] [Abstract][Full Text] [Related]
2. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C. Segner WP; Schmidt CF; Boltz JK Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801 [TBL] [Abstract][Full Text] [Related]
3. Enrichment, isolation, and cultural characteristics of marine strains of Clostridium botulinum type C. Segner WP; Schmidt CF; Boltz JK Appl Microbiol; 1971 Dec; 22(6):1017-24. PubMed ID: 4944800 [TBL] [Abstract][Full Text] [Related]
4. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity. Anellis A; Berkowitz D; Kemper D; Rowley DB Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814 [TBL] [Abstract][Full Text] [Related]
5. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
6. [Clostridium botulinum type C: 1. Selection of a highly toxigenic bacterial population from a pure culture]. Vinet G; Daigneault N Can J Microbiol; 1976 Sep; 22(9):1229-32. PubMed ID: 788871 [No Abstract] [Full Text] [Related]
7. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
8. Heat injury and recovery of vegetative cells of Clostridium botulinum type E. Pierson MD; Payne SL; Ades GL Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963 [TBL] [Abstract][Full Text] [Related]
9. Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1977 Jul; 34(1):23-9. PubMed ID: 329760 [TBL] [Abstract][Full Text] [Related]
10. The germination requirements of spores of Clostridium botulinum type E. Ando Y Jpn J Microbiol; 1971 Nov; 15(6):515-25. PubMed ID: 4946422 [No Abstract] [Full Text] [Related]
11. Recovery of spores of Clostridium botulinum in yeast extract agar and pork infusion agar after heat treatment. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1977 Oct; 34(4):377-81. PubMed ID: 335970 [TBL] [Abstract][Full Text] [Related]
12. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F. Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures. Adams DM Appl Microbiol; 1973 Sep; 26(3):282-7. PubMed ID: 4356457 [TBL] [Abstract][Full Text] [Related]
14. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM; Young-Perkins KE; Merson RL Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489 [TBL] [Abstract][Full Text] [Related]
15. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778 [TBL] [Abstract][Full Text] [Related]
16. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. COO-1095-3. Graikoski JT; Kempe LL COO Rep; 1966 Jan; ():1-100. PubMed ID: 4312998 [No Abstract] [Full Text] [Related]
17. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores. Reddy NR; Tetzloff RC; Skinner GE Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779 [TBL] [Abstract][Full Text] [Related]
18. Growth from spores of nonproteolytic Clostridium botulinum in heat-treated vegetable juice. Stringer SC; Haque N; Peck MW Appl Environ Microbiol; 1999 May; 65(5):2136-42. PubMed ID: 10224012 [TBL] [Abstract][Full Text] [Related]
19. The role of intracellular glucan in endogenous fermentation and spore maturation in Clostridium botulinum type E. Strasdine GA Can J Microbiol; 1972 Feb; 18(2):211-7. PubMed ID: 4553163 [No Abstract] [Full Text] [Related]
20. Survival and dormancy of Clostridia spores. Hofer JW; Davis J Tex Med; 1972 Feb; 68(2):80-1. PubMed ID: 4552272 [No Abstract] [Full Text] [Related] [Next] [New Search]