These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4945149)

  • 1. Nucleoside diphosphate sugar pyrophosphorylases of Shigella flexneri and Escherichia coli.
    Chojnacki T; Jankowski W; Janczura E
    Acta Biochim Pol; 1971; 18(4):347-51. PubMed ID: 4945149
    [No Abstract]   [Full Text] [Related]  

  • 2. [Activity of nucleoside diphosphate sugar synthetases (pyrophosphorylases) in cells of Escherichia coli and Shigella flexneri].
    Janzcura E; Chojnacki T
    Med Dosw Mikrobiol; 1971; 23(4):297-302. PubMed ID: 4946464
    [No Abstract]   [Full Text] [Related]  

  • 3. The glycogen phosphorylase of Tetrahymena pyriformis. II. Inhibition and inactivation by EDTA and ATP and other kinetic properties.
    Kahn V; Blum JJ
    Arch Biochem Biophys; 1971 Mar; 143(1):92-105. PubMed ID: 4998007
    [No Abstract]   [Full Text] [Related]  

  • 4. Polymerization of deoxyribonucleoside diphosphates with an enzyme from an Escherichia coli mutant lacking deoxyribonucleic acid polymerase activity.
    Hsieh WT
    J Biol Chem; 1971 Mar; 246(6):1780-4. PubMed ID: 4926549
    [No Abstract]   [Full Text] [Related]  

  • 5. Ribonucleoside diphosphate reductase. Purification of the two subunits, proteins B1 and B2.
    Brown NC; Canellakis ZN; Lundin B; Reichard P; Thelander L
    Eur J Biochem; 1969 Jul; 9(4):561-73. PubMed ID: 4896737
    [No Abstract]   [Full Text] [Related]  

  • 6. Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis.
    Noguchi T; Shiba T
    Biosci Biotechnol Biochem; 1998 Aug; 62(8):1594-6. PubMed ID: 9757566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Presence and separation of plant nucleotide glucose pyrophosphorylases].
    Axelos M; Péaud-Lenoël C
    Bull Soc Chim Biol (Paris); 1969 Jun; 51(2):261-73. PubMed ID: 4308039
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effect of certain polyions on the interchange of the terminal phosphate of ribonucleoside diphosphates catalyzed by polynucleotide phosphorylase].
    Mardashev SR; Rebrov LB; Debov SS
    Biull Eksp Biol Med; 1966 Oct; 62(10):48-50. PubMed ID: 4915167
    [No Abstract]   [Full Text] [Related]  

  • 9. Multiple molecular forms of uridine diphosphate glucose pyrophosphorylase from Salmonella typhimurium. II. Genetic determination of multiple forms.
    Nakae T; Nikaido H
    J Biol Chem; 1971 Jul; 246(14):4397-403. PubMed ID: 4937126
    [No Abstract]   [Full Text] [Related]  

  • 10. The mechanism of action of the enzyme uridine diphosphoglucose 4-epimerase. Proof of an oxidation-reduction mechanism with direct transfer of hydrogen between substrate and the B-position of the enzyme-bound pyridine nucleotide.
    Nelsestuem GL; Kirkwood S
    J Biol Chem; 1971 Dec; 246(24):7533-43. PubMed ID: 4332554
    [No Abstract]   [Full Text] [Related]  

  • 11. Nucleoside monophosphokinases of Escherichia coli infected and uninfected with an RNA phage.
    Hiraga S; Sugino Y
    Biochim Biophys Acta; 1966 Feb; 114(2):416-8. PubMed ID: 5329274
    [No Abstract]   [Full Text] [Related]  

  • 12. Differentiation in Acanthamoeba: beta-glucan synthesis during encystment.
    Potter JL; Weisman RA
    Biochim Biophys Acta; 1971 Apr; 237(1):65-74. PubMed ID: 5578579
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction between uridine diphosphate galactose and uridine diphosphate galactose 4-epimerase from Escherichia coli.
    Seyama Y; Kalckar HM
    Biochemistry; 1972 Jan; 11(1):40-4. PubMed ID: 4333195
    [No Abstract]   [Full Text] [Related]  

  • 14. CONTROL ASPECTS OF URIDINE 5'-DIPHOSPHATE GLUCOSE AND THYMIDINE 5'-DIPHOSPHATE GLUCOSE SYNTHESIS BY MICROBIAL ENZYMES.
    BERNSTEIN RL; ROBBINS PW
    J Biol Chem; 1965 Jan; 240():391-7. PubMed ID: 14253441
    [No Abstract]   [Full Text] [Related]  

  • 15. Allosteric effects and substrate specificity of the ribonucleoside diphosphate reductase system from Escherichia coli B.
    Larsson A; Reichard P
    Biochim Biophys Acta; 1966 Feb; 113(2):407-8. PubMed ID: 5328937
    [No Abstract]   [Full Text] [Related]  

  • 16. Incorporation of 5,6-dihydrouridine triphosphate into ribonucleic acid by DNA-dependent RNA polymerase.
    Royburman P; Royburman S; Visser DW
    Biochem Biophys Res Commun; 1965 Jul; 20(3):291-7. PubMed ID: 5323173
    [No Abstract]   [Full Text] [Related]  

  • 17. Partial purification and sugar nucleotide inhibition of UDP-glucose pyrophosphorylase from Lilium longiflorum pollen.
    Hopper JE; Dickinson DB
    Arch Biochem Biophys; 1972 Feb; 148(2):523-35. PubMed ID: 5019873
    [No Abstract]   [Full Text] [Related]  

  • 18. Monofunctional substrates of polynucleotide phosphorylase. The monoaddition of 2'(3')-O-isovaleryl-nucleoside diphosphate to an initiator oligonucleotide.
    Kaufmann G; Fridkin M; Zutra A; Littauer UZ
    Eur J Biochem; 1971 Dec; 24(1):4-11. PubMed ID: 4944991
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of the 2'-hydroxyl in polynucleotide conformation: poly 2'-O-methyluridylic acid.
    Zmudzka B; Shugar D
    Acta Biochim Pol; 1971; 18(3):321-37. PubMed ID: 5129174
    [No Abstract]   [Full Text] [Related]  

  • 20. On the mechanism of the UDP-D-glucose-4'-epimerase. Evidence for a 3-keto-hexose intermediate.
    Davis L; Glaser L
    Biochem Biophys Res Commun; 1971 Jun; 43(6):1429-35. PubMed ID: 4328049
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.