BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 4945189)

  • 21. Regulation of the tyrosine biosynthetic enzymes in Salmonella typhimurium: analysis of the involvement of tyrosyl-transfer ribonucleic acid and tyrosyl-transfer ribonucleic acid synthetase.
    Heinonen J; Artz SW; Zalkin H
    J Bacteriol; 1972 Dec; 112(3):1254-63. PubMed ID: 4404819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interconvertible molecular-weight forms of the bifunctional chorismate mutase-prephenate dehydratase from Acinetobacter calcoaceticus.
    Berry A; Byng GS; Jensen RA
    Arch Biochem Biophys; 1985 Dec; 243(2):470-9. PubMed ID: 4083897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926.
    Blumenstock E; Salcher O; Lingens F
    J Gen Microbiol; 1980 Mar; 117(1):81-7. PubMed ID: 7391822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymic basis for leakiness of auxotrophs for phenylalanine in Pseudomonas aeruginosa.
    Berry A; Bhatnagar RK; Jensen RA
    J Gen Microbiol; 1987 Nov; 133(11):3257-63. PubMed ID: 3128639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic analysis of phenylalanine-responding mutants of Pseudomonas aeruginosa.
    Waltho JA
    J Bacteriol; 1972 Dec; 112(3):1070-5. PubMed ID: 4629651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants.
    Qian Y; Lynch JH; Guo L; Rhodes D; Morgan JA; Dudareva N
    Nat Commun; 2019 Jan; 10(1):15. PubMed ID: 30604768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108.
    Hall GC; Jensen RA
    J Bacteriol; 1980 Dec; 144(3):1034-42. PubMed ID: 6108316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic separability of the chorismate mutase and prephenate dehydrogenase components of the Escherichia coli tyrA gene product.
    Maruya A; O'Connor MJ; Backman K
    J Bacteriol; 1987 Oct; 169(10):4852-3. PubMed ID: 3308859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Biosynthesis of phenylalanine and tyrosine in Flavobacteria].
    Waldner-Sander S; Keller B; Keller E; Lingens F
    Hoppe Seylers Z Physiol Chem; 1983 Oct; 364(10):1467-73. PubMed ID: 6642432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzyme-enzyme interaction and the biosynthesis of aromatic amino acids in Escherichia coli.
    Powell JT; Morrison JF
    Biochim Biophys Acta; 1979 Jun; 568(2):467-74. PubMed ID: 385057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prephenate dehydrogenase from Neurospora: feedback activation by phenylalanine.
    Catcheside DE
    Biochem Biophys Res Commun; 1969 Aug; 36(4):651-6. PubMed ID: 5809710
    [No Abstract]   [Full Text] [Related]  

  • 32. Enzymic arrangement and allosteric regulation of the aromatic amino acid pathway in Neisseria gonorrhoeae.
    Berry A; Jensen RA; Hendry AT
    Arch Microbiol; 1987; 149(2):87-94. PubMed ID: 2894820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remnants of an ancient pathway to L-phenylalanine and L-tyrosine in enteric bacteria: evolutionary implications and biotechnological impact.
    Bonner CA; Fischer RS; Ahmad S; Jensen RA
    Appl Environ Microbiol; 1990 Dec; 56(12):3741-7. PubMed ID: 2082822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chorismate mutase:prephenate dehydratase from Acinetobacter calcoaceticus. Purification, properties and immunological cross-reactivity.
    Ahmad S; Wilson AT; Jensen RA
    Eur J Biochem; 1988 Sep; 176(1):69-79. PubMed ID: 3046943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chorismate mutase-prephenate dehydratase from Escherichia coli: active sites of a bifunctional enzyme.
    Duggleby RG; Sneddon MK; Morrison JF
    Biochemistry; 1978 Apr; 17(8):1548-54. PubMed ID: 348236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The aromatic amino acid pathway branches at L-arogenate in Euglena gracilis.
    Byng GS; Whitaker RJ; Shapiro CL; Jensen RA
    Mol Cell Biol; 1981 May; 1(5):426-38. PubMed ID: 6152855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis.
    Chávez-Béjar MI; Lara AR; López H; Hernández-Chávez G; Martinez A; Ramírez OT; Bolívar F; Gosset G
    Appl Environ Microbiol; 2008 May; 74(10):3284-90. PubMed ID: 18344329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The reactivity of the sulphydryl groups of chorismate mutase/prephenate dehydratase--a bifunctional enzyme of phenylalanine biosynthesis in Escherichia coli K12.
    Ma KH; Davidson BE
    Biochim Biophys Acta; 1985 Jan; 827(1):1-7. PubMed ID: 3881132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production.
    Reifenrath M; Bauer M; Oreb M; Boles E
    Metab Eng Commun; 2018 Dec; 7():e00079. PubMed ID: 30370221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate.
    Andrews PR; Smith GD; Young IG
    Biochemistry; 1973 Aug; 12(18):3492-8. PubMed ID: 4731190
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.