These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 4946148)

  • 21. Cobalamin-dependent methionine synthase from Escherichia coli: involvement of zinc in homocysteine activation.
    Goulding CW; Matthews RG
    Biochemistry; 1997 Dec; 36(50):15749-57. PubMed ID: 9398304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of molecular weights and Stokes' radii of polypeptide chains by thin-layer gel filtration in guanidine hydrochloride.
    Klaus GG; Nitecki DE; Goodman JW
    Anal Biochem; 1972 Jan; 45(1):286-97. PubMed ID: 5009290
    [No Abstract]   [Full Text] [Related]  

  • 23. Enzymic synthesis of methionine: formation of a radioactive cobamide enzyme with N5-methyl-14C-tetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1967 Mar; 119(1):572-9. PubMed ID: 4861150
    [No Abstract]   [Full Text] [Related]  

  • 24. The biosynthesis of methionine.
    Rüdiger H; Jaenicke L
    Mol Cell Biochem; 1973 Jun; 1(2):157-68. PubMed ID: 4585090
    [No Abstract]   [Full Text] [Related]  

  • 25. Folic acid and the methylation of homocysteine by Bacillus subtilis.
    Salem AR; Pattison JR; Foster MA
    Biochem J; 1972 Feb; 126(4):993-1004. PubMed ID: 4627401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the cation sensibility of the vitamin B12-dependent methionine synthetase (5-methyltetrahydrofolate-homocysteine-methyltransferase from Escherichia coli).
    Rüdiger H
    FEBS Lett; 1973 Sep; 35(2):295-8. PubMed ID: 4582945
    [No Abstract]   [Full Text] [Related]  

  • 27. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine.
    Goulding CW; Postigo D; Matthews RG
    Biochemistry; 1997 Jul; 36(26):8082-91. PubMed ID: 9201956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectrophotometric evidence for the formation of an Escherichia coli B B-12s methyltransferase.
    Taylor RT; Hanna ML
    Biochem Biophys Res Commun; 1970 Feb; 38(4):758-64. PubMed ID: 4910248
    [No Abstract]   [Full Text] [Related]  

  • 29. Characterization of cobalamin-dependent methionine synthase purified from the human malarial parasite, Plasmodium falciparum.
    Krungkrai J; Webster HK; Yuthavong Y
    Parasitol Res; 1989; 75(7):512-7. PubMed ID: 2671982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of the folate substrate to 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase.
    Whitfield CD; Weissbach H
    J Biol Chem; 1970 Jan; 245(2):402-9. PubMed ID: 4904483
    [No Abstract]   [Full Text] [Related]  

  • 31. The isolation of N 5 -methyltetrahydrofolate-homocysteine transmethylase from bovine brain.
    Mangum JH; Steuart BW; North JA
    Arch Biochem Biophys; 1972 Jan; 148(1):63-9. PubMed ID: 5058696
    [No Abstract]   [Full Text] [Related]  

  • 32. Chemical propylation of vitamin-B12 transmethylase: anomalous behavior of S-adenosyl-L-methionine.
    Taylor RT; Whitfield C; Weissbach H
    Arch Biochem Biophys; 1968 Apr; 125(1):240-52. PubMed ID: 4870151
    [No Abstract]   [Full Text] [Related]  

  • 33. STUDIES ON METHIONINE BIOSYNTHESIS. EFFECT OF ALKYLCOBAMIDE DERIVATIVES ON THE FORMATION OF HOLOENZYME.
    WEISSBACH H; REDFIELD BG; DICKERMAN H; BROT N
    J Biol Chem; 1965 Feb; 240():856-62. PubMed ID: 14275145
    [No Abstract]   [Full Text] [Related]  

  • 34. Binding of substrate to N5-methyl-tetrahydroteroyl-triglutamate-homocysteine transmethylase.
    Whitfield CD; Weissbach H
    Biochem Biophys Res Commun; 1968 Dec; 33(6):996-1003. PubMed ID: 4884788
    [No Abstract]   [Full Text] [Related]  

  • 35. Interaction of guanosine 5'-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA.
    Gordon J
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1574-8. PubMed ID: 4867666
    [No Abstract]   [Full Text] [Related]  

  • 36. Escherichia coli B cobalamin methyltransferase: ability of diaphorases and lipoamide dehydrogenases to function as reducing agents.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Jul; 139(1):149-63. PubMed ID: 4319457
    [No Abstract]   [Full Text] [Related]  

  • 37. Relation between subunit structure and temperature-sensitivity of mutant phenylalanyl RNA synthetases of Escherichia coli.
    Böck A
    Eur J Biochem; 1968 Apr; 4(3):395-400. PubMed ID: 4871338
    [No Abstract]   [Full Text] [Related]  

  • 38. Isolation and in vitro restriction of unmethylated DNA from Escherichia coli K.
    Bouche JP
    Biochim Biophys Acta; 1974 Oct; 366(2):135-42. PubMed ID: 4616721
    [No Abstract]   [Full Text] [Related]  

  • 39. Cobalamin-dependent methionine synthase.
    Banerjee RV; Matthews RG
    FASEB J; 1990 Mar; 4(5):1450-9. PubMed ID: 2407589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methylation of mercury compounds by methylcobalamin.
    Bertilsson L; Neujahr HY
    Biochemistry; 1971 Jul; 10(14):2805-8. PubMed ID: 4934289
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.