These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4946257)

  • 41. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms.
    Dunlap KR; Perry JJ
    J Bacteriol; 1967 Dec; 94(6):1919-23. PubMed ID: 6074400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anthranilic acid metabolism by microorganisms. Formation of 5-hydroxyanthranilate as an intermediate in anthranilate metabolism by Norcardia opaca.
    Cain RB
    Antonie Van Leeuwenhoek; 1968; 34(4):17-32. PubMed ID: 5304014
    [No Abstract]   [Full Text] [Related]  

  • 43. Cultivation of Candida lipolytica 4-1 on hydrocarbons. IV. Fatty acids formed during batch cultivation on model gas oils.
    Volfová O; Pecka K
    Folia Microbiol (Praha); 1973; 18(4):286-99. PubMed ID: 4753341
    [No Abstract]   [Full Text] [Related]  

  • 44. Mechanisms of steroid oxidation by microorganisms. XII. Metabolism of hexahydroindanpropionic acid derivatives.
    Lee SS; Sih CJ
    Biochemistry; 1967 May; 6(5):1395-403. PubMed ID: 6036833
    [No Abstract]   [Full Text] [Related]  

  • 45. [Degradation of herbicide Alvison-8 by microorganisms].
    Finkel'shtein ZI; Golovleva LA; Golovlev EL; Skriabin GK
    Mikrobiologiia; 1976; 45(5):879-83. PubMed ID: 1004275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ansamitocin analogs from a mutant strain of Nocardia. I. Isolation of the mutant, fermentation and antimicrobial properties.
    Tanida S; Izawa M; Hasegawa T
    J Antibiot (Tokyo); 1981 May; 34(5):489-95. PubMed ID: 7275830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert.
    Le TN; Mikolasch A; Awe S; Sheikhany H; Klenk HP; Schauer F
    J Basic Microbiol; 2010 Jun; 50(3):241-53. PubMed ID: 20143352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Oligonitrophilic coryne-like bacteria and Nocardia assimilating hydrocarbons].
    Kvasnikov EI; Nesterenko OA; Kliushnikova TM; Pavlenko NI; Pisarchuk EN
    Izv Akad Nauk SSSR Biol; 1971; 4():551-64. PubMed ID: 5121782
    [No Abstract]   [Full Text] [Related]  

  • 49. Bioconversion of steroid glycosides by Nocardia restricta.
    Belic I; Kastelic-Suhadolc T; Kralj B
    J Steroid Biochem; 1985 Sep; 23(3):323-6. PubMed ID: 4046605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Steroid transformation with immobilized microorganisms].
    Atrat P
    Z Allg Mikrobiol; 1982; 22(10):723-61. PubMed ID: 6762777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial dehydrogenation of dihydrotomatidines.
    Belic I; Kramer V; Soćić H
    J Steroid Biochem; 1973 Jul; 4(4):363-8. PubMed ID: 4747981
    [No Abstract]   [Full Text] [Related]  

  • 52. [Spectrum of fatty acids of a Candida strain following culture on n-alkanes].
    Hornei S; Köhler M; Weide H
    Z Allg Mikrobiol; 1972; 12(1):19-27. PubMed ID: 5045840
    [No Abstract]   [Full Text] [Related]  

  • 53. [Characteristics of the tricarboxylic acid cycle in Nocardia erythropolis].
    Eroshina NV; Golovlev EL
    Mikrobiologiia; 1979; 48(1):23-7. PubMed ID: 423807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. n-Alkane oxidation by a Pseudomonas. Formation and beta-oxidation of intermediate fatty acids.
    HERINGA JW; HUYBREGTSE R; van der LINDEN A
    Antonie Van Leeuwenhoek; 1961; 27():51-8. PubMed ID: 13713582
    [No Abstract]   [Full Text] [Related]  

  • 55. [Species compostition of the butane utilizing microorganisms].
    Telegina ZP
    Mikrobiologiia; 1966; 35(6):1059-63. PubMed ID: 6003008
    [No Abstract]   [Full Text] [Related]  

  • 56. A novel medium for the production of cephamycin C by Nocardia lactamdurans using solid-state fermentation.
    Kagliwal LD; Survase SA; Singhal RS
    Bioresour Technol; 2009 May; 100(9):2600-6. PubMed ID: 19155173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A genetic approach to the biosynthesis of the rifamycin-chromophore in Nocardia mediterranei. I. Isolation and characterization of a pentose-excreting auxotrophic mutant of Nocardia mediterranei with drastically reduced rifamycin production.
    Ghisalba O; Nüesch J
    J Antibiot (Tokyo); 1978 Mar; 31(3):202-14. PubMed ID: 649515
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The extracellular accumulation of metabolic products by hydrocarbon-degrading microorganisms.
    Abbott BJ; Gledhill WE
    Adv Appl Microbiol; 1971; 14():249-388. PubMed ID: 4946255
    [No Abstract]   [Full Text] [Related]  

  • 59. Biochemical and physiological characterization of the efrotomycin fermentation.
    Chartrain M; Hunt G; Horn L; Kirpekar A; Mathre D; Powell A; Wassel L; Nielsen J; Buckland B; Greasham R
    J Ind Microbiol; 1991 Jun; 7(4):293-9. PubMed ID: 1367328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Assimilation of volatile n-alkanes (C6-C10) by bacteria].
    Kvasnikov EI; Solomko EF; Nesterenko OA; Pavlenko NI
    Mikrobiologiia; 1972; 41(4):586-91. PubMed ID: 5084508
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.