These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 4950360)
1. Genetic transformation of the phage T4rIIB by DNA of the phage T4r+. 13. Minimal length of DNA parts required for integration of the donor fragments in phage T4 transformation. Aleksandrova NM Sov Genet; 1971 May; 7(5):684-6. PubMed ID: 4950360 [No Abstract] [Full Text] [Related]
2. [Transforming activity of phage T4r+ DNA, treated with ultraviolet light, nitrous acid, hydroxylamine and visible light in the presence of methylene blue]. Sherman GIa Genetika; 1975; 11(5):127-31. PubMed ID: 1218709 [TBL] [Abstract][Full Text] [Related]
3. Genetic transformation of the page T4rIIB-638 by deoxyribonucleic acid of the T4R+ phage. Communication 13. A model transforming system for the study of gene function of the isolated donor DNA. Fonshtein LM; Mnatsakanyan GG Sov Genet; 1974 Jan; 7(10):1320-4. PubMed ID: 4596369 [No Abstract] [Full Text] [Related]
4. [Genetic transformation of phage T4rII-638 by phage T4 deoxyribonucleic acid. XVI. Effect of phage T4 gene v and bacterial genes rec A and uvr A on the effectiveness of phage T4rII-638 transformation]. Gol'dfarb DM; Sherman GIa Genetika; 1973 Nov; 9(11):114-23. PubMed ID: 4619991 [No Abstract] [Full Text] [Related]
5. [Integration of donor DNA fragment during phage transformation]. Vinetskiĭ IuP; Kulinich AV Dokl Akad Nauk SSSR; 1971; 198(1):211-4. PubMed ID: 4935114 [No Abstract] [Full Text] [Related]
6. Genetic transformation of T4r IIB-638 phage induced by deoxyribonucleic acid of the T4R+ phage. XIV. Two types of competence of the lysozyme spheroplasts of Escherichia coli BB. Nazarova AF; Mnatsakanyan GG; Gol'dfarb DM Sov Genet; 1974 Apr; 8(2):229-32. PubMed ID: 4602913 [No Abstract] [Full Text] [Related]
7. [Relation between the number of recombinants and r-function of donor phage DNA in yields from individual cells during phage transformation]. Avdienko ID; Aleksandrova NM; Vinetskiĭ IuP Mikrobiologiia; 1969; 38(2):291-4. PubMed ID: 4899393 [No Abstract] [Full Text] [Related]
8. Effect of change in structure of cohesive ends on aggregating ability and biological activity of bacteriophage lambda DNA. Kopylova-Sviridova TN; Sukovatitsyn VV; Fodor I; Baev AA Mol Biol (Mosk); 1976; 10(4):762-6. PubMed ID: 799259 [TBL] [Abstract][Full Text] [Related]
9. Possibilities for transferring phage Mu into most gram-negative bacteria. Van Montagu M; Engler G; De Picker A; Silva A; Schell J Arch Int Physiol Biochim; 1975 Dec; 83(5):1016-7. PubMed ID: 58597 [No Abstract] [Full Text] [Related]
10. The transfer of bacterial biotin genes to Escherichia coli K-12 cells by transfection with lambda bio phage DNA. Skalińska BA; Osowiecki H Acta Microbiol Pol; 1977; 26(3):243-8. PubMed ID: 70968 [TBL] [Abstract][Full Text] [Related]
11. The genetic mechanism of the integration of fragments of transforming DNA of phage T4 and its relationship to the problem of high negative interference. Vinetskii YuP ; Kulinich AV; Tarasov VA Sov Genet; 1974 Jan; 7(10):1312-9. PubMed ID: 4824838 [No Abstract] [Full Text] [Related]
12. Early intracellular events in the replication of T4 phage DNA, IV. Host-mediated single-stranded breaks and repair in ultraviolet-damaged T4 DNA. Kozinski A; Lorkiewicz ZK Proc Natl Acad Sci U S A; 1967 Nov; 58(5):2109-16. PubMed ID: 4866987 [No Abstract] [Full Text] [Related]
13. Integration of nonselective markers during recombination of donor and recipient DNA of phage T4B. Communication II. Correction of markers in the transformation of denatured DNA. Vinetskii YP; Aleksandrova NM Sov Genet; 1974 Sep; 8(9):1183-9. PubMed ID: 4610788 [No Abstract] [Full Text] [Related]
14. Depression of prophage genes as the cause of phage conversion. Golub EI; Orlova GG; Reshetnikova VN; Zvenigorodskii VI Mol Biol; 1972 Jan; 5(4):431-40. PubMed ID: 4596715 [No Abstract] [Full Text] [Related]
15. The UV sensitivity of some early-function temperature-sensitive mutants of phage T4. Baldy MW Virology; 1970 Feb; 40(2):272-87. PubMed ID: 4909413 [No Abstract] [Full Text] [Related]
16. A T4-induced endonuclease which attacks T4 DNA. Altman S; Meselson M Proc Natl Acad Sci U S A; 1970 Jul; 66(3):716-21. PubMed ID: 4913209 [TBL] [Abstract][Full Text] [Related]
17. Properties and structure of a gene 24-controlled T4 giant phage. Bijlenga RK; Aebi U; Kellenberger E J Mol Biol; 1976 May; 103(3):469-98. PubMed ID: 781276 [No Abstract] [Full Text] [Related]
18. [Phage T4 partial diploidy obtained with the method of DNA interrupted injection. I. Analysis of the genetic structure and phage progeny reproduction process]. Mekshenkov MI; Seregina TM Mol Biol (Mosk); 1975; 9(3):459-66. PubMed ID: 768746 [TBL] [Abstract][Full Text] [Related]
19. Study of the UV effect on MS2 phages. Karczag A; Rontó G; Tarján I Acta Biochim Biophys Acad Sci Hung; 1972; 7(2):173-7. PubMed ID: 4605182 [No Abstract] [Full Text] [Related]
20. The target of recombination in crossings of different phage T4 mutants. Matvienko NI Sov Genet; 1973 Dec; 7(8):1069-73. PubMed ID: 4593272 [No Abstract] [Full Text] [Related] [Next] [New Search]