These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 4950513)
21. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation. Kim HS; Kim NR; Choi W Biotechnol Lett; 2011 Mar; 33(3):509-15. PubMed ID: 21063748 [TBL] [Abstract][Full Text] [Related]
22. Heterologous production of dihomo-gamma-linolenic acid in Saccharomyces cerevisiae. Yazawa H; Iwahashi H; Kamisaka Y; Kimura K; Aki T; Ono K; Uemura H Appl Environ Microbiol; 2007 Nov; 73(21):6965-71. PubMed ID: 17873077 [TBL] [Abstract][Full Text] [Related]
23. Quantitative effects of unsaturated fatty acids in microbial mutants. IV. Lipid composition of Saccharomyces cerevisiae when growth is limited by unsaturated fatty acid supply. Holub BJ; Lands WE Can J Biochem; 1975 Dec; 53(12):1262-77. PubMed ID: 766924 [TBL] [Abstract][Full Text] [Related]
24. The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat. Arneborg N; Høy CE; Jørgensen OB Yeast; 1995 Aug; 11(10):953-9. PubMed ID: 8533470 [TBL] [Abstract][Full Text] [Related]
25. Mutation of host delta9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis. Lee WM; Ishikawa M; Ahlquist P J Virol; 2001 Mar; 75(5):2097-106. PubMed ID: 11160714 [TBL] [Abstract][Full Text] [Related]
26. Nutritional regulation of yeast delta-9 fatty acid desaturase activity. Bossie MA; Martin CE J Bacteriol; 1989 Dec; 171(12):6409-13. PubMed ID: 2687232 [TBL] [Abstract][Full Text] [Related]
27. Effectiveness of various unsaturated fatty acids in supporting growth and respiration in Saccharomyces cerevisiae. Walenga RW; Lands WE J Biol Chem; 1975 Dec; 250(23):9121-9. PubMed ID: 1104617 [TBL] [Abstract][Full Text] [Related]
28. Assembly of complex III into newly developing mitochondrial membranes. Aithal HN; Tustanoff ER Can J Biochem; 1975 Dec; 53(12):1278-81. PubMed ID: 175897 [TBL] [Abstract][Full Text] [Related]
29. [Effects of carcinogenic hydrocarbons on lipids of plasma membranes and mitochondria of Saccharomyces cerevisiae]. Baraud J; Maurice A; Napias C; Velours J Biochim Biophys Acta; 1973 Mar; 296(3):481-92. PubMed ID: 4347388 [No Abstract] [Full Text] [Related]
30. Perturbations of the dynamics of lipid alkyl chains in membrane systems: effect on the activity of membrane-bound enzymes. Eletr S; Williams MA; Watkins T; Keith AD Biochim Biophys Acta; 1974 Mar; 339(2):190-201. PubMed ID: 4611490 [No Abstract] [Full Text] [Related]
31. Anaerobic growth of Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of unsaturated fatty acids. Dekker WJC; Wiersma SJ; Bouwknegt J; Mooiman C; Pronk JT FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31425603 [TBL] [Abstract][Full Text] [Related]
32. Unsaturated fatty acids and mitochondrial function in yeast. Nutr Rev; 1972 Sep; 30(9):218-21. PubMed ID: 4565183 [No Abstract] [Full Text] [Related]
33. The effect of antibiotics on lipid synthesis during respiratory development in Saccharomyces cerevisiae. Gordon PA; Syewart PR Microbios; 1971 Sep; 4(14):115-32. PubMed ID: 4949964 [No Abstract] [Full Text] [Related]
34. Saccharomyces cerevisiae strain expressing a plant fatty acid desaturase produces polyunsaturated fatty acids and is susceptible to oxidative stress induced by lipid peroxidation. Cipak A; Hasslacher M; Tehlivets O; Collinson EJ; Zivkovic M; Matijevic T; Wonisch W; Waeg G; Dawes IW; Zarkovic N; Kohlwein SD Free Radic Biol Med; 2006 Mar; 40(5):897-906. PubMed ID: 16520241 [TBL] [Abstract][Full Text] [Related]
35. Effects of different culture media and oxygen upon lipids of Escherichia coli K-12. Naccarato WF; Gilbertson JR; Gelman RA Lipids; 1974 May; 9(5):322-7. PubMed ID: 4597781 [No Abstract] [Full Text] [Related]
36. Function of human mitochondrial 2,4-dienoyl-CoA reductase and rat monofunctional Delta3-Delta2-enoyl-CoA isomerase in beta-oxidation of unsaturated fatty acids. Gurvitz A; Wabnegger L; Yagi AI; Binder M; Hartig A; Ruis H; Hamilton B; Dawes IW; Hiltunen JK; Rottensteiner H Biochem J; 1999 Dec; 344 Pt 3(Pt 3):903-14. PubMed ID: 10585880 [TBL] [Abstract][Full Text] [Related]
37. Proton magnetic resonance spectroscopy of promitochondrial membranes from yeast grown under different regimes of lipid supplementation. Austin K; Brown LR; Stewart PR J Membr Biol; 1975 Oct; 24(1):55-69. PubMed ID: 1104838 [TBL] [Abstract][Full Text] [Related]
38. The effects of altered membrane sterol composition on oxidative phosphorylation in a haem mutant of Saccharomyces cerevisiae. Astin AM; Haslam JM Biochem J; 1977 Aug; 166(2):287-98. PubMed ID: 334162 [TBL] [Abstract][Full Text] [Related]
39. Quantitative studies of the development of S. cerevisiae mitochondria. Ferdouse M; Rickard PA; Moss FJ; Blanch HW Biotechnol Bioeng; 1972 Nov; 14(6):1007-26. PubMed ID: 4567261 [No Abstract] [Full Text] [Related]
40. Incorporation of unsaturated fatty acids by Saccharomyces cerevisiae: conservation of fatty-acyl saturation in phosphatidylinositol. Pilkington BJ; Rose AH Yeast; 1991 Jul; 7(5):489-94. PubMed ID: 1897314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]