These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4953779)

  • 21. Biosynthesis of biotin-vitamers by family Enterobacteriaceae.
    Ohsugi M; Imanishi Y; Teraoka T; Nishimura K; Nakao S
    J Nutr Sci Vitaminol (Tokyo); 1990 Oct; 36(5):447-56. PubMed ID: 2097319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipoic acid stimulation of biotin biosynthesis.
    Elford HL; Wright LE
    Arch Biochem Biophys; 1968 Jan; 123(1):145-51. PubMed ID: 4865806
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibition of enhanced toxin production by Clostridium difficile in biotin-limited conditions.
    Yamakawa K; Karasawa T; Ohta T; Hayashi H; Nakamura S
    J Med Microbiol; 1998 Sep; 47(9):767-71. PubMed ID: 9736158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological studies of amiclenomycin.
    Kitahara T; Hotta K; Yoshida M; Okami Y
    J Antibiot (Tokyo); 1975 Mar; 28(3):215-21. PubMed ID: 805118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotin biosynthesis in higher plant cells. Identification of intermediates.
    Baldet P; Gerbling H; Axiotis S; Douce R
    Eur J Biochem; 1993 Oct; 217(1):479-85. PubMed ID: 8223585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A specific requirement for biotin in the synthesis of ornithine carbamoyltransferase by yeast.
    Dixon B; Rose AH
    Biochem J; 1966 Jun; 99(3):513-20. PubMed ID: 5964954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nutritional studies on production of antibacterial activity by the zebra mussel antagonist, Pseudomonas fluorescens CL0145A.
    Polanski-Cordovano G; Romano L; Marotta LL; Jacob S; Soo Hoo J; Tartaglia E; Asokan D; Kar S; Demain AL
    J Microbiol Biotechnol; 2013 May; 23(5):656-60. PubMed ID: 23648855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ability of casamino acids to support gellan production by Sphingomonas paucimobilis ATCC 31461.
    West TP; Fullenkamp NA
    Microbios; 2000; 102(402):89-101. PubMed ID: 10885499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources.
    Durner R; Zinn M; Witholt B; Egli T
    Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Auxotrophy and utilization of oxidized and reduced mineral sulfur forms by Brevundimonas diminuta strains].
    Smirnov VV; Kiprianova EA; Babich LV
    Mikrobiol Z; 2001; 63(5):27-33. PubMed ID: 11785417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the first step of biotin biosynthesis in Bacillus sphaericus. Purification and characterization of the pimeloyl-CoA synthase, and uptake of pimelate.
    Ploux O; Soularue P; Marquet A; Gloeckler R; Lemoine Y
    Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):685-90. PubMed ID: 1445232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nutritional features of the intestinal anaerobe Ruminococcus bromii.
    Herbeck JL; Bryant MP
    Appl Microbiol; 1974 Dec; 28(6):1018-22. PubMed ID: 4451362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of the carbon oxidation level of the energy source on heat of reaction in biosynthesis of a Pseudomonas strain.
    Boffi V; Lucarelli AM
    Microbiologica; 1982 Oct; 5(4):341-50. PubMed ID: 6818430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth characteristics of a pseudomonad which utilizes pyridoxine or pyridoxamine as a carbon source.
    Guirard BM; Snell EE
    J Bacteriol; 1971 Dec; 108(3):1318-21. PubMed ID: 4945196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid culture carbon, nitrogen and inorganic phosphate source regulate nematicidal activity by fluorescent pseudomonads in vitro.
    Siddiqui IA; Shaukat SS
    Lett Appl Microbiol; 2004; 38(3):185-90. PubMed ID: 14962038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nutritional requirements of some non-pathogenic Neisseria grown in simple synthetic media.
    McDonald IJ; Johnson KG
    Can J Microbiol; 1975 Aug; 21(8):1198-204. PubMed ID: 1164696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of nutritional factors on production of tabtoxin, a phytotoxin, by Pseudomonas syringae pv. tabaci.
    Dehbi F; Harzallah D; Larous L
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):241-7. PubMed ID: 12425044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uptake of pimelic acid by Escherichia coli and Pseudomonas denitrificans.
    Pai CH; McLaughlin GE
    Can J Microbiol; 1969 Jul; 15(7):809-10. PubMed ID: 4894285
    [No Abstract]   [Full Text] [Related]  

  • 39. [Extracellular protease biosynthesis in Aspergillus candidus in the absence of carbon or sulfur sources].
    Al'Nuri MA; Ivanitsa VA; Egorov NS
    Mikrobiologiia; 1981; 50(6):1019-24. PubMed ID: 7035850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of nitrogen source on growth of Arthrobacter simplex and its biosynthesis of cholinesterase].
    Imsenecki AA; Popova LS; Kirillova NF
    Mikrobiologiia; 1976 JUL-AUG; 45(4):614-9. PubMed ID: 979679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.