These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 4955058)
21. Comparison of PCR-RFLP, ribotyping and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains. Shangkuan YH; Yang JF; Lin HC; Shaio MF J Appl Microbiol; 2000 Sep; 89(3):452-62. PubMed ID: 11021577 [TBL] [Abstract][Full Text] [Related]
22. Comparison of minisatellite polymorphisms in the Bacillus cereus complex: a simple assay for large-scale screening and identification of strains most closely related to Bacillus anthracis. Valjevac S; Hilaire V; Lisanti O; Ramisse F; Hernandez E; Cavallo JD; Pourcel C; Vergnaud G Appl Environ Microbiol; 2005 Nov; 71(11):6613-23. PubMed ID: 16269689 [TBL] [Abstract][Full Text] [Related]
23. Large-scale screening of nasal swabs for Bacillus anthracis: descriptive summary and discussion of the National Institutes of Health's experience. Kiratisin P; Fukuda CD; Wong A; Stock F; Preuss JC; Ediger L; Brahmbhatt TN; Fischer SH; Fedorko DP; Witebsky FG; Gill VJ J Clin Microbiol; 2002 Aug; 40(8):3012-6. PubMed ID: 12149367 [TBL] [Abstract][Full Text] [Related]
24. Differentiation of Bacillus anthracis from Bacillus cereus by gas chromatographic whole-cell fatty acid analysis. Lawrence D; Heitefuss S; Seifert HS J Clin Microbiol; 1991 Jul; 29(7):1508-12. PubMed ID: 1909348 [TBL] [Abstract][Full Text] [Related]
25. Development of a novel selective agar for the isolation and detection of Bacillus anthracis. Rohde A; Papp S; Feige P; Grunow R; Kaspari O J Appl Microbiol; 2020 Aug; 129(2):311-318. PubMed ID: 32052540 [TBL] [Abstract][Full Text] [Related]
26. DNA competition studies within the Bacillus cereus group of bacilli. Somerville HJ; Jones ML J Gen Microbiol; 1972 Nov; 73(2):257-65. PubMed ID: 4630545 [No Abstract] [Full Text] [Related]
27. Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. Daffonchio D; Raddadi N; Merabishvili M; Cherif A; Carmagnola L; Brusetti L; Rizzi A; Chanishvili N; Visca P; Sharp R; Borin S Appl Environ Microbiol; 2006 Feb; 72(2):1295-301. PubMed ID: 16461679 [TBL] [Abstract][Full Text] [Related]
28. Molecular approaches to identify and differentiate Bacillus anthracis from phenotypically similar Bacillus species isolates. Marston CK; Gee JE; Popovic T; Hoffmaster AR BMC Microbiol; 2006 Mar; 6():22. PubMed ID: 16515693 [TBL] [Abstract][Full Text] [Related]
29. Developing an integrated proteo-genomic approach for the characterisation of biomarkers for the identification of Bacillus anthracis. Misra RV; Ahmod NZ; Parker R; Fang M; Shah H; Gharbia S J Microbiol Methods; 2012 Feb; 88(2):237-47. PubMed ID: 22178189 [TBL] [Abstract][Full Text] [Related]
30. Identification of Bacillus anthracis by API tests. Logan NA; Carman JA; Melling J; Berkeley RC J Med Microbiol; 1985 Aug; 20(1):75-85. PubMed ID: 3927004 [TBL] [Abstract][Full Text] [Related]
31. Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis. Zhong W; Shou Y; Yoshida TM; Marrone BL Appl Environ Microbiol; 2007 May; 73(10):3446-9. PubMed ID: 17400781 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of two selective media for the isolation of Bacillus anthracis. Marston CK; Beesley C; Helsel L; Hoffmaster AR Lett Appl Microbiol; 2008 Jul; 47(1):25-30. PubMed ID: 18554264 [TBL] [Abstract][Full Text] [Related]
33. SELECTIVE MEDIA FOR THE ISOLATION OF PASTEURELLA PESTIS. KNISELY RF; SWANEY LM; FRIEDLANDER H J Bacteriol; 1964 Aug; 88(2):491-6. PubMed ID: 14203368 [TBL] [Abstract][Full Text] [Related]
34. Distribution of S-layers on the surface of Bacillus cereus strains: phylogenetic origin and ecological pressure. Mignot T; Denis B; Couture-Tosi E; Kolstø AB; Mock M; Fouet A Environ Microbiol; 2001 Aug; 3(8):493-501. PubMed ID: 11578310 [TBL] [Abstract][Full Text] [Related]
35. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples. Irenge LM; Durant JF; Tomaso H; Pilo P; Olsen JS; Ramisse V; Mahillon J; Gala JL Appl Microbiol Biotechnol; 2010 Nov; 88(5):1179-92. PubMed ID: 20827474 [TBL] [Abstract][Full Text] [Related]
36. Genetic distribution of 295 Bacillus cereus group members based on adk-screening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromosomal locus in B. anthracis. Olsen JS; Skogan G; Fykse EM; Rawlinson EL; Tomaso H; Granum PE; Blatny JM J Microbiol Methods; 2007 Dec; 71(3):265-74. PubMed ID: 17997177 [TBL] [Abstract][Full Text] [Related]
37. LETHALITY FOR MICE OF VEGETATIVE AND SPORE FORMS OF BACILLUS CEREUS AND BACILLUS CEREUS-LIKE INSECT PATHOGENS INJECTED INTRAPERITONEALLY AND SUBCUTANEOUSLY. LAMANNA C; JONES L J Bacteriol; 1963 Mar; 85(3):532-5. PubMed ID: 14042929 [TBL] [Abstract][Full Text] [Related]
38. DnaJ sequences of Bacillus cereus strains isolated from outbreaks of hospital infection are highly similar to Bacillus anthracis. Zhang J; van Hung P; Hayashi M; Yoshida S; Ohkusu K; Ezaki T Diagn Microbiol Infect Dis; 2011 Jul; 70(3):307-15. PubMed ID: 21683265 [TBL] [Abstract][Full Text] [Related]
39. Agar diffusion method for the differentiation of Bacillus anthracis. Angelety LH; Wright GG Appl Microbiol; 1971 Jan; 21(1):157-9. PubMed ID: 4993230 [TBL] [Abstract][Full Text] [Related]
40. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species. Ogawa H; Fujikura D; Ohnuma M; Ohnishi N; Hang'ombe BM; Mimuro H; Ezaki T; Mweene AS; Higashi H PLoS One; 2015; 10(3):e0122004. PubMed ID: 25774512 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]