These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 4956095)
1. Control of glycolysis in washed suspensions of Streptococcus faecalis. Forrest WW; Walker DJ Nature; 1965 Jul; 207(992):46-8. PubMed ID: 4956095 [No Abstract] [Full Text] [Related]
2. Energies of activation and uncoupled growth in Streptococcus faecalis and Zymomonas mobilis. Forrest WW J Bacteriol; 1967 Nov; 94(5):1459-63. PubMed ID: 4964479 [TBL] [Abstract][Full Text] [Related]
3. Interdependence of glucose and arginine catabolism in Streptococcus faecalis R. ATCC 8043. Pandey VN Biochem Biophys Res Commun; 1980 Oct; 96(4):1480-7. PubMed ID: 6778478 [No Abstract] [Full Text] [Related]
4. Requirement of GTP for pteridine synthesis in Salmonella typhimurium and its inhibition by AMP. Dalal FR; Gots JS Biochem Biophys Res Commun; 1965 Aug; 20(4):509-14. PubMed ID: 4955428 [No Abstract] [Full Text] [Related]
5. Seminars on Lesch-Nyhan syndrome. Aspects of purine metabolism. Balis ME Fed Proc; 1968; 27(4):1067-74. PubMed ID: 4968794 [No Abstract] [Full Text] [Related]
6. Adenylyl peptides from Streptococcus faecalis. BROWN AD Biochim Biophys Acta; 1958 Nov; 30(2):447-8. PubMed ID: 13607477 [No Abstract] [Full Text] [Related]
8. Membrane-associated protein synthesis in Streptococcus faecalis. Moore LD; Umbreit WW Biochim Biophys Acta; 1965 Jul; 103(3):466-77. PubMed ID: 4954982 [No Abstract] [Full Text] [Related]
9. [Synthesis of citrulline from carbamyl phosphate in presence of bacterial suspensions]. ROGLIANI E; PROCACCINI S; ROGLIANI C; DELLA PIETRA G Boll Soc Ital Biol Sper; 1957; 33(8-9):1257-8. PubMed ID: 13522901 [No Abstract] [Full Text] [Related]
10. The synthesis of thymidine diphosphate hexoses of Streptococcus faecalis grown on D-galactose. PAZUR JH; KLEPPE K; CEPURE A Biochem Biophys Res Commun; 1962 Apr; 7():157-61. PubMed ID: 14484710 [No Abstract] [Full Text] [Related]
11. Correlations between adenine nucleotide levels and the velocities of rate-determining steps in the glycolysis and respiration of intact Ehrlich ascites carcinoma cells. Coe EL Biochim Biophys Acta; 1966 Jun; 118(3):495-511. PubMed ID: 4291240 [No Abstract] [Full Text] [Related]
12. Potassium transport and control of glycolysis in human erythrocytes. Eckel RE; Rizzo SC; Lodish H; Berggren AB Am J Physiol; 1966 Apr; 210(4):737-43. PubMed ID: 4222110 [No Abstract] [Full Text] [Related]
13. Selective penetration of ammonia and alkylamines into Streptococcus fecalis and their effect on glycolysis. ZARLENGO M; ABRAMS A Biochim Biophys Acta; 1963 Apr; 71():65-77. PubMed ID: 14003275 [No Abstract] [Full Text] [Related]
14. Adenosine triphosphate pool during the growth cycle in Streptococcus faecalis. Forrest WW J Bacteriol; 1965 Oct; 90(4):1013-8. PubMed ID: 4954515 [TBL] [Abstract][Full Text] [Related]
16. Effect of ionizing radiation on transmembrane potential of Streptococcus. Fomenko BS; Akoev IG Radiat Res; 1979 Mar; 77(3):479-89. PubMed ID: 35814 [No Abstract] [Full Text] [Related]
17. The nature of trichloroacetic acid-soluble derivatives of D-alanine in Streptococcus faecalis. IKAWA M; SNELL E Arch Biochem Biophys; 1958 Dec; 78(2):338-47. PubMed ID: 13618016 [No Abstract] [Full Text] [Related]
18. Studies on erythrocyte glycolysis. 3. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis. Minakami S; Yoshikawa H J Biochem; 1966 Feb; 59(2):145-50. PubMed ID: 4223319 [No Abstract] [Full Text] [Related]
20. Control of glycolysis by phosphofructokinase in slices of rat liver, Novikoff hepatoma, and adenocarcinomas. Wu R Biochem Biophys Res Commun; 1964; 14():79-85. PubMed ID: 4284349 [No Abstract] [Full Text] [Related] [Next] [New Search]