These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 495734)

  • 21. Red cell velocity during functional hyperemia: implications for rheology and oxygen transport.
    Hester RL; Duling BR
    Am J Physiol; 1988 Aug; 255(2 Pt 2):H236-44. PubMed ID: 3407787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell flow path influences transit time through striated muscle capillaries.
    Sarelius IH
    Am J Physiol; 1986 Jun; 250(6 Pt 2):H899-907. PubMed ID: 3717364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interrelations between contracting striated muscle and precapillary microvessels.
    Gorczynski RJ; Klitzman B; Duling BR
    Am J Physiol; 1978 Nov; 235(5):H494-504. PubMed ID: 727272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer.
    Kindig CA; Richardson TE; Poole DC
    J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arteriolar control of capillary cell flow in striated muscle.
    Sweeney TE; Sarelius IH
    Circ Res; 1989 Jan; 64(1):112-20. PubMed ID: 2909294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of the functional elements regulating capillary perfusion in striated muscle.
    Delashaw JB; Duling BR
    Microvasc Res; 1988 Sep; 36(2):162-71. PubMed ID: 3185308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human SS red cell rheological behavior in the microcirculation of cremaster muscle.
    Lipowsky HH; Usami S; Chien S
    Blood Cells; 1982; 8(1):113-26. PubMed ID: 6214291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of chronic hypoxia on capillary flow and hematocrit in rat skeletal muscle.
    Fisher AJ; Schrader NW; Klitzman B
    Am J Physiol; 1992 Jun; 262(6 Pt 2):H1877-83. PubMed ID: 1621845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An examination of the contribution of red cell spacing to the uniformity of oxygen flux at the capillary wall.
    Federspiel WJ; Sarelius IH
    Microvasc Res; 1984 May; 27(3):273-85. PubMed ID: 6727699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal profile of rat skeletal muscle capillary haemodynamics during recovery from contractions.
    Ferreira LF; Padilla DJ; Musch TI; Poole DC
    J Physiol; 2006 Jun; 573(Pt 3):787-97. PubMed ID: 16581868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leukocyte sequestration in the microvasculature in normal and low flow states.
    Eppihimer MJ; Lipowsky HH
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H1122-34. PubMed ID: 8092277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of muscle metabolism and muscle blood flow in capillary units during contraction.
    Murrant CL; Sarelius IH
    Acta Physiol Scand; 2000 Apr; 168(4):531-41. PubMed ID: 10759590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that cell surface charge reduction modifes capillary red cell velocity-flux relationships in hamster cremaster muscle.
    Vink H; Wieringa PA; Spaan JA
    J Physiol; 1995 Nov; 489 ( Pt 1)(Pt 1):193-201. PubMed ID: 8583403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Augmented tissue oxygen supply during striated muscle contraction in the hamster. Relative contributions of capillary recruitment, functional dilation, and reduced tissue PO2.
    Klitzman B; Damon DN; Gorczynski RJ; Duling BR
    Circ Res; 1982 Dec; 51(6):711-21. PubMed ID: 7139886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of oxygen in arteriolar functional vasodilation in hamster striated muscle.
    Gorczynski RJ; Duling BR
    Am J Physiol; 1978 Nov; 235(5):H505-15. PubMed ID: 727273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of changes in hematocrit on red cell flows at capillary bifurcations.
    Vicaut E; Trouve R; Stücker O; Duruble M; Duvelleroy M
    Int J Microcirc Clin Exp; 1985; 4(4):351-61. PubMed ID: 4086190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue PO2 and arteriolar responses to metabolic stimuli during maturation of striated muscle.
    Proctor KG; Damon DN; Duling BR
    Am J Physiol; 1981 Sep; 241(3):H325-31. PubMed ID: 7282940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of aging on capillary hemodynamics in contracting rat spinotrapezius muscle.
    Copp SW; Ferreira LF; Herspring KF; Musch TI; Poole DC
    Microvasc Res; 2009 Mar; 77(2):113-9. PubMed ID: 19094997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo microvascular structural and functional consequences of muscle length changes.
    Poole DC; Musch TI; Kindig CA
    Am J Physiol; 1997 May; 272(5 Pt 2):H2107-14. PubMed ID: 9176275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillary grouping in hamster tibials anterior muscles: flow patterns, and physiological significance.
    Lund N; Damon DH; Damon DN; Duling BR
    Int J Microcirc Clin Exp; 1987; 5(4):359-72. PubMed ID: 3557821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.