These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 4958557)
1. Fungi on the surface of legume root nodules and phosphate solubilization. Subba-Rao NS; Bajpai PD Experientia; 1965 Jul; 21(7):386-7. PubMed ID: 4958557 [No Abstract] [Full Text] [Related]
2. [Production of amino acids by microorganisms in cultural liquid in soil]. Tiagny-Riadno MG Mikrobiologiia; 1966; 35(6):1028-32. PubMed ID: 4974782 [No Abstract] [Full Text] [Related]
3. Production of ethylene by fungi. Ilag L; Curtis RW Science; 1968 Mar; 159(3821):1357-8. PubMed ID: 5689428 [TBL] [Abstract][Full Text] [Related]
4. [Production by fungi of the genera Aspergillus, Acremonium, Verticillium of extracellular proteases which coagulate blood plasma and lyse blood clots]. Cherdyntseva TA; Egorov NS Mikrobiologiia; 1988; 57(4):574-8. PubMed ID: 3062332 [TBL] [Abstract][Full Text] [Related]
5. Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Vonk JW; Sijpesteijn AK Antonie Van Leeuwenhoek; 1973; 39(3):505-13. PubMed ID: 4201588 [No Abstract] [Full Text] [Related]
6. Phosphate solubilization by fungi associated with legume root nodules. Chhonkar PK; Subba-Rao NS Can J Microbiol; 1967 Jul; 13(7):749-53. PubMed ID: 6036878 [No Abstract] [Full Text] [Related]
7. [Production by microscopic fungi of substances coagulating human blood plasma]. Ushakova VI; Egorov NS; Klechkovskaia VV Mikrobiologiia; 1974; 43(5):834-8. PubMed ID: 4475355 [No Abstract] [Full Text] [Related]
8. Solubilization of tricalcium phosphate by some soil fungi. Mehta YR; Bhide VP Indian J Exp Biol; 1970 Jul; 8(3):228-9. PubMed ID: 5531268 [No Abstract] [Full Text] [Related]
9. Changes in ascorbic acid and carbohydrate contents in tomato fruits infected with pathogens. Oladiran AO; Iwu LN Plant Foods Hum Nutr; 1992 Oct; 42(4):373-82. PubMed ID: 1438080 [TBL] [Abstract][Full Text] [Related]
10. Utilization of phosphates in the postgerminative development of spores of Bacillus megaterium. HYATT MT; LEVINSON HS J Bacteriol; 1959 Apr; 77(4):487-96. PubMed ID: 13641214 [No Abstract] [Full Text] [Related]
11. Inhibition of RNA synthesis in Chlorella pyrenoidosa and Bacillus megaterium by the pine-blight toxin, dothistromin. Harvey AM; Batt RD; Pritchard GG J Gen Microbiol; 1976 Aug; 96(2):268-76. PubMed ID: 822126 [TBL] [Abstract][Full Text] [Related]
12. [The viability of species of microscopic fungi in nitrate-polluted water]. Alton LV Gig Sanit; 1991 Nov; (11):27-9. PubMed ID: 1809634 [TBL] [Abstract][Full Text] [Related]
13. Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Banik S; Dey BK Zentralbl Mikrobiol; 1983; 138(1):17-23. PubMed ID: 6845902 [TBL] [Abstract][Full Text] [Related]
14. Morphology and productivity of filamentous fungi. Grimm LH; Kelly S; Krull R; Hempel DC Appl Microbiol Biotechnol; 2005 Dec; 69(4):375-84. PubMed ID: 16317480 [TBL] [Abstract][Full Text] [Related]
16. Microbial transformations of p-coumaric acid by Bacillus megaterium and Curvularia lunata. Torres Y Torres JL; Rosazza JP J Nat Prod; 2001 Nov; 64(11):1408-14. PubMed ID: 11720522 [TBL] [Abstract][Full Text] [Related]
17. The growth behavior of Azotobacter chroococcum in association with some microorganisms in the soil. Elwan SH; el-Naggar MR Z Allg Mikrobiol; 1972; 12(1):7-13. PubMed ID: 4625684 [No Abstract] [Full Text] [Related]
18. Production of dimethylselenide gas from inorganic selenium by eleven soil fungi. Barkes L; Fleming RW Bull Environ Contam Toxicol; 1974 Sep; 12(3):308-11. PubMed ID: 4474040 [No Abstract] [Full Text] [Related]
19. Total and cell wall phosphorus content in Bacillus megaterium in phosphate-limited media. Rodriguez C; González J; de la Rubia T; Ramos-Cormenzana A Folia Microbiol (Praha); 1982; 27(1):32-4. PubMed ID: 6800907 [TBL] [Abstract][Full Text] [Related]