These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 4959807)
1. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. Deibel RH J Bacteriol; 1964 May; 87(5):988-92. PubMed ID: 4959807 [TBL] [Abstract][Full Text] [Related]
2. PHYSIOLOGY OF THE ENTEROCOCCI AS RELATED TO THEIR TAXONOMY. DEIBEL RH; LAKE DE; NIVEN CF J Bacteriol; 1963 Dec; 86(6):1275-82. PubMed ID: 14086101 [TBL] [Abstract][Full Text] [Related]
3. ISOLATION AND IDENTIFICATION OF ENTEROCOCCI FROM THE INTESTINAL TRACT OF THE RAT. ROGERS CG; SARLES WB J Bacteriol; 1964 Oct; 88(4):965-73. PubMed ID: 14219061 [TBL] [Abstract][Full Text] [Related]
6. FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS. DEIBEL RH; KVETKAS MJ J Bacteriol; 1964 Oct; 88(4):858-64. PubMed ID: 14219047 [TBL] [Abstract][Full Text] [Related]
7. Activities of arginine dihydrolase and phosphatase in Streptococcus faecalis and Streptococcus faecium. Mackey JK; Beck RW Appl Microbiol; 1968 Oct; 16(10):1543-7. PubMed ID: 4300895 [TBL] [Abstract][Full Text] [Related]
8. Interdependence of glucose and arginine catabolism in Streptococcus faecalis R. ATCC 8043. Pandey VN Biochem Biophys Res Commun; 1980 Oct; 96(4):1480-7. PubMed ID: 6778478 [No Abstract] [Full Text] [Related]
9. Transport of lysine and hydroxylysine in Streptococcus faecalis. Friede JD; Gilboe DP; Triebwasser KC; Henderson LM J Bacteriol; 1972 Jan; 109(1):179-85. PubMed ID: 4621625 [TBL] [Abstract][Full Text] [Related]
10. Molar growth yields of certain lactic acid bacteria as influenced by autolysis. Moustafa HH; Collins EB J Bacteriol; 1968 Jul; 96(1):117-25. PubMed ID: 4969603 [TBL] [Abstract][Full Text] [Related]
11. Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamoylase. Roon RJ; Barker HA J Bacteriol; 1972 Jan; 109(1):44-50. PubMed ID: 4621632 [TBL] [Abstract][Full Text] [Related]
12. Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Vander Wauven C; Simon JP; Slos P; Stalon V Arch Microbiol; 1986 Sep; 145(4):386-90. PubMed ID: 3024601 [TBL] [Abstract][Full Text] [Related]
13. Molar growth yields in Streptococcus faecalis var. liquefaciens. Beck RW; Shugart LR J Bacteriol; 1966 Sep; 92(3):802-3. PubMed ID: 4958779 [No Abstract] [Full Text] [Related]
14. Immobilization and treatment of Streptococcus faecalis for the continuous conversion of arginine into citrulline. Cottenceau G; Dherbomez M; Lubochinsky B; Lettellier F Enzyme Microb Technol; 1990 May; 12(5):355-60. PubMed ID: 1367441 [TBL] [Abstract][Full Text] [Related]
15. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. Simon JP; Stalon V J Bacteriol; 1982 Nov; 152(2):676-81. PubMed ID: 6290446 [TBL] [Abstract][Full Text] [Related]
16. Catabolism of L-arginine by entrapped cells of Streptococcus faecalis ATCC8043. Franks NE Biochim Biophys Acta; 1971 Nov; 252(2):246-54. PubMed ID: 5002471 [No Abstract] [Full Text] [Related]
17. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis. Simon JP; Wargnies B; Stalon V J Bacteriol; 1982 Jun; 150(3):1085-90. PubMed ID: 6281235 [TBL] [Abstract][Full Text] [Related]
18. Adenosine triphosphate pool during the growth cycle in Streptococcus faecalis. Forrest WW J Bacteriol; 1965 Oct; 90(4):1013-8. PubMed ID: 4954515 [TBL] [Abstract][Full Text] [Related]
19. Stimulation of proteinase biosynthesis by canavanine in streptococcus faecalis var. liquefaciens. Hammel JM; Zimmerman LN Appl Microbiol; 1966 May; 14(3):337-9. PubMed ID: 4961552 [TBL] [Abstract][Full Text] [Related]