These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 4959983)
41. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Masoud W; Vogensen FK; Lillevang S; Abu Al-Soud W; Sørensen SJ; Jakobsen M Int J Food Microbiol; 2012 Feb; 153(1-2):192-202. PubMed ID: 22154239 [TBL] [Abstract][Full Text] [Related]
42. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi. Oh CK; Oh MC; Kim SH J Med Food; 2004; 7(1):38-44. PubMed ID: 15117551 [TBL] [Abstract][Full Text] [Related]
43. Impact of co-cultivation with Enterococcus faecalis over growth, enterotoxin production and gene expression of Staphylococcus aureus in broth and fresh cheeses. Nogueira Viçosa G; Vieira Botelho C; Botta C; Bertolino M; Fernandes de Carvalho A; Nero LA; Cocolin L Int J Food Microbiol; 2019 Nov; 308():108291. PubMed ID: 31437692 [TBL] [Abstract][Full Text] [Related]
44. Effect of Lactococcus garvieae, Lactococcus lactis and Enterococcus faecalis on the behaviour of Staphylococcus aureus in microfiltered milk. Alomar J; Loubiere P; Delbes C; Nouaille S; Montel MC Food Microbiol; 2008 May; 25(3):502-8. PubMed ID: 18355675 [TBL] [Abstract][Full Text] [Related]
45. Antibacterial activity of lactic acid bacteria isolated from vacuum-packaged meats. Ahn C; Stiles ME J Appl Bacteriol; 1990 Sep; 69(3):302-10. PubMed ID: 2123171 [TBL] [Abstract][Full Text] [Related]
46. Transcriptomic and metabolic responses of Staphylococcus aureus in mixed culture with Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans in milk. Zdenkova K; Alibayov B; Karamonova L; Purkrtova S; Karpiskova R; Demnerova K J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1237-47. PubMed ID: 27342241 [TBL] [Abstract][Full Text] [Related]
47. The influence of the cell free solution of lactic acid bacteria on tyramine production by food borne-pathogens in tyrosine decarboxylase broth. Toy N; Özogul F; Özogul Y Food Chem; 2015 Apr; 173():45-53. PubMed ID: 25465993 [TBL] [Abstract][Full Text] [Related]
48. Characterization of the spoilage lactic acid bacteria in "sliced vacuum-packed cooked ham". Kalschne DL; Womer R; Mattana A; Sarmento CM; Colla LM; Colla E Braz J Microbiol; 2015 Mar; 46(1):173-81. PubMed ID: 26221105 [TBL] [Abstract][Full Text] [Related]
49. The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Ito A; Sato Y; Kudo S; Sato S; Nakajima H; Toba T Curr Microbiol; 2003 Sep; 47(3):231-6. PubMed ID: 14570275 [TBL] [Abstract][Full Text] [Related]
50. Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. Kesmen Z; Yetiman AE; Gulluce A; Kacmaz N; Sagdic O; Cetin B; Adiguzel A; Sahin F; Yetim H Int J Food Microbiol; 2012 Feb; 153(3):428-35. PubMed ID: 22209604 [TBL] [Abstract][Full Text] [Related]
51. Development of a selective enterococcus medium based on manganese ion deficiency, sodium azide, and alkaline pH. Efthymiou CJ; Joseph SW Appl Microbiol; 1974 Sep; 28(3):411-6. PubMed ID: 4214072 [TBL] [Abstract][Full Text] [Related]
52. Antagonistic action of lactic cultures toward spoilage and pathogenic microorganisms in food. Kivanç M Nahrung; 1990; 34(3):273-7. PubMed ID: 2116596 [TBL] [Abstract][Full Text] [Related]
53. Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. McKay GA; Beaulieu S; Arhin FF; Belley A; Sarmiento I; Parr T; Moeck G J Antimicrob Chemother; 2009 Jun; 63(6):1191-9. PubMed ID: 19369269 [TBL] [Abstract][Full Text] [Related]
54. Influence of food microorganisms on staphylococcal growth and enterotoxin production in meat. McCoy DW Appl Microbiol; 1966 May; 14(3):372-7. PubMed ID: 5970822 [TBL] [Abstract][Full Text] [Related]
55. Succession of dominant and antagonistic lactic acid bacteria in fermented cucumber: insights from a PCR-based approach. Singh AK; Ramesh A Food Microbiol; 2008 Apr; 25(2):278-87. PubMed ID: 18206770 [TBL] [Abstract][Full Text] [Related]
56. Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak. Chuah LO; Shamila-Syuhada AK; Liong MT; Rosma A; Thong KL; Rusul G Food Microbiol; 2016 Sep; 58():95-104. PubMed ID: 27217364 [TBL] [Abstract][Full Text] [Related]
57. Genomic organization of lactic acid bacteria. Davidson BE; Kordias N; Dobos M; Hillier AJ Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):161-83. PubMed ID: 8879406 [TBL] [Abstract][Full Text] [Related]
58. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Toomey N; Bolton D; Fanning S Res Microbiol; 2010 Mar; 161(2):127-35. PubMed ID: 20074643 [TBL] [Abstract][Full Text] [Related]