These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4960182)

  • 21. Isolation of the bacteriophage lambda receptor from Escherichia coli.
    Randall-Hazelbauer L; Schwartz M
    J Bacteriol; 1973 Dec; 116(3):1436-46. PubMed ID: 4201774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ENZYMIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XVII. SOME UNUSUAL PHYSICAL PROPERTIES OF THE PRODUCT PRIMED BY NATIVE DNA TEMPLATES.
    SCHILDKRAUT CL; RICHARDSON CC; KORNBERG A
    J Mol Biol; 1964 Jul; 9():24-45. PubMed ID: 14200388
    [No Abstract]   [Full Text] [Related]  

  • 23. Structural studies of lambda transducing bacteriophage carrying bacterial deoxyribonucleic acid from the metBJLF region of the Escherichia coli chromosome.
    Krueger JH; Johnson JR; Greene RC; Dresser M
    J Bacteriol; 1981 Aug; 147(2):612-21. PubMed ID: 6267016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterologous deoxyribonucleic acid uptake and complexing with cellular constituents in competent Bacillus subtilis.
    Soltyk A; Shugar D; Piechowska M
    J Bacteriol; 1975 Dec; 124(3):1429-38. PubMed ID: 811646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cation fluxes and permeability changes accompanying bacteriophage infection of Escherichia coli.
    Silver S; Levine E; Spielman PM
    J Virol; 1968 Aug; 2(8):763-71. PubMed ID: 4883012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resistance of bacteriophage PBS2 infection to 6-(p-hydroxyphenylazo)-uracil, an inhibitor of Bacillus subtilis deoxyribonucleic acid synthesis.
    Price AR; Fogt SM
    J Virol; 1973 Feb; 11(2):338-40. PubMed ID: 4631841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of bacteriophage PBS1 and phi W-14 deoxyribonucleic acids on homologous deoxyribonucleic acid uptake and transformation in competent Bacillus subtilis.
    López P; Espinosa M; Piechowska M; Shugar D
    J Bacteriol; 1980 Jul; 143(1):50-8. PubMed ID: 6772635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat induction of prophage phi 105 in Bacillus subtilis: replication of the bacterial and bacteriophage genomes.
    Armentrout RW; Rutberg L
    J Virol; 1971 Oct; 8(4):455-68. PubMed ID: 5002012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Preparation of molecules combining phage lambda and Bacillus subtilis DNAs by the sticky end addition method].
    Dubinin NP; Sliusarenko AG; Kapelinskaia TV; Boguspaev KK; Gorodetskiĭ SI
    Dokl Akad Nauk SSSR; 1976; 230(3):729-32. PubMed ID: 824113
    [No Abstract]   [Full Text] [Related]  

  • 30. Control of gene function in bacteriophage T4. I. Ribonucleic acid and deoxyribonucleic acid metabolism in T4rII-infected lambda-lysogenic hosts.
    Sauerbier W; Puck SM; Bräutigam AR; Hirsch-Kauffmann M
    J Virol; 1969 Nov; 4(5):742-52. PubMed ID: 4902633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli.
    Huang A; Friesen J; Brunton JL
    J Bacteriol; 1987 Sep; 169(9):4308-12. PubMed ID: 3040688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of T-even bacteriophage deoxyribonucleic acid from host deoxyribonucleic acid by hydroxyapatite chromatography.
    Oishi M
    J Bacteriol; 1969 Apr; 98(1):104-8. PubMed ID: 4889266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriophage infecting the myxobacterium Chondrococcus columnaris.
    Kingsbury DT; Ordal EJ
    J Bacteriol; 1966 Mar; 91(3):1327-32. PubMed ID: 5929758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of beta-glucosyltransferase and lysozyme synthesis during T4 deoxyribonucleic acid-dependent ribonucleic acid-dependent ribonucleic acid and protein synthesis in vitro.
    Gold LM; Schweiger M
    J Biol Chem; 1970 May; 245(9):2255-8. PubMed ID: 4909889
    [No Abstract]   [Full Text] [Related]  

  • 35. Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells.
    PUCK TT; LEE HH
    J Exp Med; 1955 Feb; 101(2):151-75. PubMed ID: 13233443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potassium requirement for synthesis of macromolecules in Bacillus subtilis infected with bacteriophage 2C.
    Willis DB; Ennis HL
    J Virol; 1969 Jan; 3(1):1-7. PubMed ID: 4977239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and base sequence in the cohesive ends of bacteriophage lambda DNA.
    Wu R; Kaiser AD
    J Mol Biol; 1968 Aug; 35(3):523-37. PubMed ID: 4299833
    [No Abstract]   [Full Text] [Related]  

  • 38. Concurrent changes in transducing efficiency and content of transforming deoxyribonucleic acid in Bacillus subtilis bacteriophage SP-10.
    Taylor MJ; Thorne CB
    J Bacteriol; 1966 Jan; 91(1):81-8. PubMed ID: 4955254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological activity of 5-hydroxymethyluracil and its deoxynucleoside in noninfected and phage-infected Bacillus subtilis.
    Nishihara M; Friedman N; Vasken Aposhian H
    J Virol; 1969 Feb; 3(2):164-70. PubMed ID: 4975365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escherichia coli and Bacillus subtilis phage deoxyribonucleic acid-directed deoxycytidylate deaminase synthesis in Escherichia coli extracts.
    Schweiger M; Gold LM
    J Biol Chem; 1970 Oct; 245(19):5022-5. PubMed ID: 4990167
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.