These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 496056)

  • 1. Effects of ketamine on nociceptive cells in the medial medullary reticular formation of the cat.
    Ohtani M; Kikuchi H; Kitahata LM; Taub A; Toyooka H; Hanaoka K; Dohi S
    Anesthesiology; 1979 Nov; 51(5):414-7. PubMed ID: 496056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halothane-induced changes in neuronal activity of cells of the nucleus reticularis gigantocellularis of the cat.
    Kikuchi H; Kitahata LM; Collins JG; Kawahara M; Nio K
    Anesth Analg; 1980 Dec; 59(12):897-901. PubMed ID: 7192508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stimulation of bulbar reticular formation on long latency discharges in the region of nucleus centralis lateralis of thalamus.
    Shen KF; Ho SF
    Sci Sin; 1977; 20(4):475-84. PubMed ID: 918648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG; Dostrovsky JO
    J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Participation of the nucleus reticularis gigantocellularis in the morphine suppression of jaw-opening reflex in cats.
    Chan SH
    Brain Res; 1979 Jan; 160(2):377-8. PubMed ID: 761072
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential distribution of three types of nociceptive neurons within the caudal bulbar reticular formation in the cat.
    Fujino Y; Koyama N; Yokota T
    Brain Res; 1996 Apr; 715(1-2):225-9. PubMed ID: 8739643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of descending facilitation and inhibition of spinal nociceptive transmission from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat.
    Zhuo M; Gebhart GF
    J Neurophysiol; 1992 Jun; 67(6):1599-614. PubMed ID: 1352804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of neurons in the medial pontomedullary reticular formation during orienting movements in alert head-free cats.
    Isa T; Naito K
    J Neurophysiol; 1995 Jul; 74(1):73-95. PubMed ID: 7472355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between nucleus centrum medianum and gigantocellular nociceptive neurons.
    Pearl GS; Anderson KV
    Brain Res Bull; 1980; 5(2):203-6. PubMed ID: 7378859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation.
    Mohrland JS; Gebhart GF
    Brain Res; 1980 Nov; 201(1):23-37. PubMed ID: 6251951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of medullary reticulospinal neurons to sinusoidal stimulation of labyrinth receptors in decerebrate cat.
    Manzoni D; Pompeiano O; Stampacchia G; Srivastava UC
    J Neurophysiol; 1983 Nov; 50(5):1059-79. PubMed ID: 6644360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the connection between the substantia nigra and the medullary reticular formation in the rat.
    Duggal KN; Barasi S
    Neurosci Lett; 1983 Apr; 36(3):237-42. PubMed ID: 6306523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal receptive field properties in feline nucleus reticularis gigantocellularis.
    Pearl GS; Anderson KV
    Brain Res Bull; 1978; 3(3):241-4. PubMed ID: 709385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reduced responsiveness of neurones in nucleus reticularis gigantocellularis following their excitation by peripheral nerve stimulation.
    Fox JE; Wolstencroft JH
    J Physiol; 1976 Jul; 258(3):687-704. PubMed ID: 978500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Features of the activation of neurons of the reticular formation of the brain stem in the cat to somatic stimuli of various modality].
    Karpukhina MV
    Neirofiziologiia; 1985; 17(6):828-31. PubMed ID: 3003598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal projections from the medullary reticular formation of the North American opossum: heterogeneity.
    Martin GF; Cabana T; Humbertson AO; Laxson LC; Panneton WM
    J Comp Neurol; 1981 Mar; 196(4):663-82. PubMed ID: 6110678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey.
    Haber LH; Martin RF; Chatt AB; Willis WD
    Brain Res; 1978 Sep; 153(1):163-8. PubMed ID: 209875
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of 5-HT, GABA and opioid peptides in presynaptic inhibition of tooth pulp input from the medial brainstem.
    Lovick TA
    Brain Res; 1983 Dec; 289(1-2):135-42. PubMed ID: 6661639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response patterns of cells in the feline caudal nucleus reticularis gigantocellularis after noxious trigeminal and spinal stimulation.
    Pearl GS; Anderson KV
    Exp Neurol; 1978 Jan; 58(2):231-41. PubMed ID: 618745
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.